Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
khuat hung
Xem chi tiết
Lê Hoàng Quân
Xem chi tiết
Nguyễn Ngọc Khánh Huyền
18 tháng 11 2021 lúc 20:56

Tham khảo:
undefined

Bùi Hồng Sang
Xem chi tiết
Diệu Anh
26 tháng 4 2020 lúc 18:39

a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d

=> (14n+3) -(21n+4) \(⋮\)d

=> 3(14n+3) -2(21n+4) \(⋮\)d

=> 42n+9 - 42n -8 \(⋮\)d

=> 1\(⋮\)d

=> 21n+4/14n+3 là phân số tối giản

Vậy...

c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d

=> (6n+4) - (21n+3) \(⋮\)d

=> 7(6n+4) - 2(21n+3) \(⋮\)d

=> 42n +28 - 42n -6\(⋮\)d

=> 22 \(⋮\)cho số nguyên tố d

\(\in\){11;2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ

Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11

Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được

Khách vãng lai đã xóa
Vũ Trọng Hiếu
Xem chi tiết
Trần Đình Quân
28 tháng 2 2018 lúc 22:14

Gọi ƯCLN(18n + 3) và (21n + 7) là d

Ta có : 18n + 3 chia hết cho d \(\Rightarrow\)3n + 4 chia hết cho d \(\Rightarrow\) 21n + 28

Ta có : 21n + 28 - 21n + 7 \(\Rightarrow\) 21 chia hết cho d

\(\Rightarrow\) d \(\in\) { 3 ; 7 ;21 }

\(\Rightarrow\) n khác 7a +1

Hoàng Thị Thu Thảo
Xem chi tiết
Nguyễn Quốc Khánh
2 tháng 3 2016 lúc 13:30

Ta có:

\(\frac{18n+3}{21n+7}=\frac{3\left(6n+1\right)}{7\left(3n+1\right)}\)

Nhận thấy 3 và 7 ; 3 và 3n+1 ; 6n+1 và 3n+1 đều là nguyên tố cùng nhau

Để A tối giản 

=>6n+1 không chia hết cho 7

=>\(n\ne1\)

Vậy để A tối gainr thì n khác 0 và n thuộc Z

nguen khanh linh
Xem chi tiết
Nhóc_Siêu Phàm
10 tháng 12 2017 lúc 20:31

Gọi ƯCLN (18n+3) và (21n+7) là d 
Ta có:18n+3 chia hết cho d=>3n+4 chia hết cho d=>21n+28 

T​a có:21n28-21n+7=>21 chia hết cho d =>d thuộc(3,7,21) 

=>n khác 7a+1

NTN vlogs
30 tháng 12 2018 lúc 10:35

Gọi ƯCLN (18n+3) và (21n+7) là d 
Ta có:18n+3 chia hết cho d=>3n+4 chia hết cho d=>21n+28 

T​a có:21n28-21n+7=>21 chia hết cho d =>d thuộc(3,7,21) 

=>n khác 7a+1

Chi Nguyễn Thị Diệp
Xem chi tiết
Trần Việt Anh
22 tháng 2 2019 lúc 21:29

giả sử 18n+3 và 21n+7 cùng rút gọn được cho số nguyên tố p

suy ra 6(21n+7) - 7(18n+3) chia hết cho p hay 21 chia hết cho p

vậy p thuộc {3;7}. nhưng 21n +7 không chia hết cho 3 nên suy ra 18n+3 chia hết cho 7

do đó 18n +3 -21 chia hết cho 7 hay 18(n-1) chia hết cho 7.từ đó n-1 chia hết cho 7

vậy n=7k +1 (k thuộc N) thì phân số 18n+3/21n+7 có thể rút gọn được.

Chi Nguyễn Thị Diệp
22 tháng 2 2019 lúc 21:38

BÀI NÀY MK BIẾT LÀM NHƯNG KO BIẾT CÁCH TRÌNH BÀY THÔI 

BAN CHƯA RÚT GỌN HẲN

Chi Nguyễn Thị Diệp
22 tháng 2 2019 lúc 21:38

RÚT GỌN SAI RỒI

Đàm Trung Đông
Xem chi tiết
Đào Thị Diệu Vi
19 tháng 3 2016 lúc 22:45

Giả sử 18n+3 và 21n+7 cùng chia hết cho số nguyên tố d
Ta có: 6(21n+7)−7(18n+3)⋮d→21⋮d→d∈{3;7}. Hiển nhiên d≠3 vì 21n+7 không chia hết cho 3.
Để (18n+3,21n+7)=1 thì d≠7 tức là 18n+3 không chia hết cho 7 nếu 18n+3−21 không chia hết cho 7↔18(n−1) không chia hết cho 7↔n−1 không chia hết cho 7↔n≠7k+1(k∈n)
Kết luận: Với n≠7k+1(k∈N thì 18n+3 và 21n+7 là hai số nguyên tố cùng nhau.

love you forever
19 tháng 3 2016 lúc 21:29

bít làm nhưng dài quá ko muốn trình bày, sorry

_͏ͥ͏_͏ͣ͏_͏ͫ͏ ngáo@2k8亗
Xem chi tiết
Tran Le Khanh Linh
5 tháng 3 2020 lúc 15:43

Ta có: \(\frac{18n+3}{21n+7}=\frac{3\left(6n+1\right)}{7\left(3n+1\right)}\)

Do (3;7)=(6n+1;3n+1)=(3;3n+1)=1

=> Phân số có thể rút gọn khi 6n+1 chia hết cho 7

Mà 6n+1=7n-(n-1)

=> n-1 chia hết cho 7

=> n=7k+1 thì phân số có thể rút gọn

=> n=7k+2; 7k+3; 7k+4; 7k+6; 7k+6 thì phân số có thể rút gọn

Khách vãng lai đã xóa
_͏ͥ͏_͏ͣ͏_͏ͫ͏ ngáo@2k8亗
5 tháng 3 2020 lúc 15:52

bạn ơi cho mình kỉ cái dòng thứ 2 được không ạ?

Khách vãng lai đã xóa
_͏ͥ͏_͏ͣ͏_͏ͫ͏ ngáo@2k8亗
5 tháng 3 2020 lúc 15:55

mà sao 6n+1 lại bằng 3 ạ

Khách vãng lai đã xóa
Mai Nguyên
Xem chi tiết