Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Erza
Xem chi tiết
Subuki Ran
Xem chi tiết

đề bài 

bị thiếu

à bạn

Khách vãng lai đã xóa
Subuki Ran
9 tháng 2 2021 lúc 18:00
Ko đủ mà bạn
Khách vãng lai đã xóa
Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 1 2021 lúc 22:54

a) Ta có: BM=2MC(gt)

nên \(\dfrac{MC}{BM}=\dfrac{1}{2}\)(1)

Ta có: NA=2NC(gt)

nên \(\dfrac{NC}{NA}=\dfrac{1}{2}\)(2)

Từ (1) và (2) suy ra \(\dfrac{CM}{MB}=\dfrac{CN}{NA}\)

Xét ΔCAB có 

N∈AC(gt)

M∈BC(gt)

\(\dfrac{CM}{MB}=\dfrac{CN}{NA}\)(cmt)

Do đó: MN//AB(Định lí Ta lét đảo)

Phạm Duy Tiến
Xem chi tiết
Phạm Duy Tiến
Xem chi tiết
Bé Doraemon
29 tháng 12 2019 lúc 21:47
https://i.imgur.com/UR8beWe.jpg
Khách vãng lai đã xóa
Bé Doraemon
29 tháng 12 2019 lúc 21:48
https://i.imgur.com/IIklKYx.jpg
Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 1 2018 lúc 15:02

a) Học sinh tự làm

b) Chứng minh A N 1 2 N C ⇒ S A M E = S A E N ⇒ E M = E N  

hay E là trung điểm MN.

c) Chứng minh được EG//HF và HE/FG nên EHFG là hình bình  hành; Mặt khác BM ^ NC (do AB ^ AC)

Suy ra EHFG là hình chữ nhật

Nguyễn Văn Z
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 3 2023 lúc 22:34

a: AM=6-2=6cm

AN=12-3=9cm

=>AM/AB=AN/AC

=>MN//BC

b: Xet ΔAKC có NI//KC

nên NI/KC=AI/AK

Xét ΔABK có MI//BK

nên MI/BK=AI/AK

=>NI/KC=MI/BK

c: NI/KC=MI/BK

KC=KB

=>NI=MI

=>I là tđ của MN

Li Jahun
Xem chi tiết
Li Jahun
7 tháng 7 2016 lúc 18:03

Mong các bạn giỏi hơn nhanh giúp mình với!Mình cần lắm !

super sayda goku
9 tháng 2 2017 lúc 20:52

Em chịu vì em mới hoc lớp 5

Phạm Vũ Minh Tùng
12 tháng 6 lúc 10:37

tick đi

Help Me
Xem chi tiết
Thanh Hoàng Thanh
8 tháng 1 2022 lúc 9:07

a) Xét tam giác ABN và tam giác ACM:

+ AB = AC (gt).

\(\widehat{A}\) chung

+ AM = AN (gt).

\(\Rightarrow\) Tam giác ABN = Tam giác ACM (c - g - c).

\(\Rightarrow\) BN = CM (2 cạnh tương ứng).

b) Ta có: AB = AM + MB; AC = AN + NC.

Mà AB = AC (gt); AM = AN (gt).

\(\Rightarrow\) MB = NC.

Ta có: \(\widehat{BMI}+\widehat{AMI}=180^{o}.\)

          \(\widehat{CNI}+\widehat{ANI}=180^{o}.\)

Mà \(\widehat{AMI}=\widehat{ANI}\) (Tam giác ABN = Tam giác ACM).

\(\Rightarrow\) \(\widehat{BMI}=\widehat{CNI}.\)

Xét tam giác BIM và tam giác CIN:

\(\widehat{BMI}=\widehat{CNI}(cmt).\)

\(\widehat{MBI}=\widehat{NCI}\) (Tam giác ABN = Tam giác ACM).

+ MB = NC (cmt).

\(\Rightarrow\) Tam giác BIM = Tam giác CIN (g - c - g).

c) Xét tam giác BAI và tam giác CAI có:

+ AI chung.

+ AB = AC (gt).

+ BI = CI (Tam giác BIM = Tam giác CIN)

\(\Rightarrow\) Tam giác BAI = Tam giác CAI (c - c - c).

\(\Rightarrow\) \(\widehat{BAI}=\widehat{CAI}\) (2 góc tương ứng).

\(\Rightarrow\) AI là phân giác \(\widehat{BAC}.\)

d) Xét tam giác AMN có: AM = AN (gt).

\(\Rightarrow\) Tam giác AMN cân tại A.

\(\Rightarrow\) \(\widehat{AMN}=\) \(\dfrac{180^o-\widehat{A}}{2}.\) (1)

Xét tam giác ABC có: AB = AC (gt).

\(\Rightarrow\) Tam giác ABC cân tại A.

\(\Rightarrow\) \(\widehat{ABC}=\) \(\dfrac{180^o-\widehat{A}}{2}.\) (2)

Từ (1); (2) \(\Rightarrow\widehat{AMN}=\widehat{ABC}.\Rightarrow\) \(MN\) // \(BC.\)

Bài 4: Cho tam giác ABC có AB = AC. Lấy điểm M trên cạnh AB, điểm N trên cạnh AC sao cho AM = AN.
a) Chứng minh BN = CM.

 b) Gọi I là giao điểm của BN và CM. Chứng minh ∆ BIM = ∆ CIN.
c) Chứng minh AI là phân giác của góc BÂC.

 d) Chứng minh MN // BC.