Cho ABC vuông tại A, đường cao AH. Biết HB = 3,6cm; HC = 6,4cm
a) Tính độ dài các đoạn thẳng AB, AC, AH.
b) Kẻ HE vuông góc AB ( E thuộc AB) và HF vuông góc AC (F thuộc AC). Chứng minh rằng: AB.HE + AC.HF = AB.AC.
Cho tam giác ABC vuông tại A có đường cao AH. a/ cm AH2= HB.HC. b/biết HB=3,6cm, HC=6,4cm. Tính BC, AH, AB, AC
a: Xet ΔABC vuông tại A co AH là đường cao
nên AH^2=HB*HC
b: BC=3,6+6,4=10cm
\(AH=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)
\(AB=\sqrt{3.6\cdot10}=6\left(cm\right)\)
=>AC=8cm
cho tam giác abc vuông tại a,đường cao ah
biết hb=3,6cm,hc=6,4cm
tính bc,ah,ab,ac
BC=3,6+6,4=10cm
AH=căn 3,6*6,4=4,8cm
AB=căn 3,6*10=6cm
AC=căn 6,4*10=8cm
Cho ∆ABC vuông tại A, đường cao AH. Biết HB = 3,6cm, HC = 6,4cm. a) Tính AB, AC, AH. b) Kẻ HE vuông góc AB, HF vuông góc AC. Tính EF. c) C/m AB × AE = AC × AF. d) C/m ∆AEF và ∆ABC đồng dạng.
a) \(BC=BH+HC=3,6+6,4=10\left(cm\right)\)
Tam giác ABC vuông tại A, đường cao AH có:
\(AB^2=BC.BH\\ \Rightarrow AB=\sqrt{BC.BH}=\sqrt{10.3,6}=6\left(cm\right)\)
Tương tự:
\(AC=\sqrt{BC.CH}=\sqrt{10.6,4}=8\left(cm\right)\)
Ta có: \(AH^2=BH.CH\)
\(\Rightarrow AH=\sqrt{BH.CH}=\sqrt{3,6.6,4}=4,8\left(cm\right)\)
b) Tứ giác AEHF là hình chữ nhật (tứ giác có 3 góc vuông) nên EF = AH = 4,8 (cm)
c) Tam giác AHB vuông tại H có EH là đường cao (gt) \(\Rightarrow AH^2=AB.AE\)
Tương tự tam giác AHC ta có \(AH^2=AC.AF\Rightarrow AB.AE=AC.AF\)
Xét tam giác AEF và tam giác ABC có:
\(\widehat{FAE}.chung\)
\(\dfrac{AF}{AB}=\dfrac{AE}{AC}\left(vì.AB.AE=AC.AF\right)\)
Do đó tam giác AEF đồng dạng tam giác ABC.
1.cho tam giác ABC vông tại A, đường cao AH. Biết AB=3cm, BC=5cm. Tính AC, AH, BH, CH 2. Cho tam giác ABC vông tại A, đường cao AH. Biết HB=3,6cm, HC=6,4cm. Tính BC,AB,AC,AH
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=5^2-3^2=16\)
hay AC=4cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{3^2}{5}=1.8\left(cm\right)\\CH=\dfrac{4^2}{5}=3.2\left(cm\right)\end{matrix}\right.\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot5=3\cdot4=12\)
hay AH=2,4cm
Bài 2:
Ta có: BC=HB+HC
nên BC=3,6+6,4
hay BC=10cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=3.6\cdot10=36\\AC^2=6.4\cdot10=64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=6\left(cm\right)\\AC=8\left(cm\right)\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AH^2=6^2-3.6^2=23.04\)
hay AH=4,8cm
Cho tam giác ABC vuông tại A, đường cao AH. Biết HB= 3,6cm;HC=6,4cm.
a,Tính độ dài các đoạn thẳng:AB,AC,AH
B, Kẻ HE vuông góc với AB; HF vuông góc vớiAC. C/M : AB.AE=AC.AF
GIÚP MÌNH VS M.N ƠI~!!!!!!!!!!!!!!
Bài 16: Cho ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cm
a)Tính độ dài các đoạn thẳng: AB, AC, AH.
b)Kẻ HE vuông góc AB ; HF vuông góc AC. Chứng minh rằng: AB.AE = AC.AF.
Giải rõ giúp mình nha!
a) Tính độ dài các đoạn thẳng: AcB, AC, AH.
Có: AH2 = HB . HC
=> AH = \(\sqrt{3,6.6,4}=4,8\) (cm)
BC = HB + HC = 3,6 + 6,4 = 10 (cm)
=> AB2 = HB . BC
=> AB = \(\sqrt{3,6.10}=6\) (cm)
=> AC = \(\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8\) (cm)
b/ Chứng minh rằng: AB.AE = AC.AF.
Gọi I là giao điểm giữa AH và EF
Có: AFE + AEF = 900 (1)
ABH + BAH = 900 (2)
mà AEHF là hình chữ nhật (vì A = E = F = 900)
=> tam giác AIE cân
=> BAH = AEF
=> (1) => AFE + BAH = 900 (3)
Từ (2) và (3) => ABH = AFE
Xét tam giác ABC và tam giác AFE có:
góc A chung
ABC = AFE (chứng minh trên)
=> \(\Delta ABC\Omega\Delta AFE\) (gg)
=> \(\frac{AB}{AF}=\frac{AC}{AE}\Rightarrow AB.AE=AC.AF\)(đpcm)
Cho tam giác ABC vuông tại A, đường cao AH. Biết HB= 3,6cm;HC=6,4cm. a,Tính độ dài các đoạn thẳng:AB,AC,AH B, Kẻ HE vuông góc với AB; HF vuông góc vớiAC. C/M : AB.AE=AC.AF. c, M,N lần lượt là trung điểm của BH,HC chứng minh tứ giác MEFN là hình thang vuông
Cho tam giác ABC vuông tại A đường cao AH. Biết AH=3,6cm , BH=2,7cm. Tính độ dài AB, BC, AC, CH
\(CH=\dfrac{AH^2}{HB}=\dfrac{3.6^2}{2.7}=4.8\left(cm\right)\)
\(BC=4.8+2.7=7.5\left(cm\right)\)
\(AB=\sqrt{BH\cdot BC}=\sqrt{2.7\cdot7.5}=4.5\left(cm\right)\)
AC=6(cm)
Cho tam ABC giác vuông tại A, AH vuông góc với BC tại H, HB=3,6cm, HC=6,4cm. Quay miền tam giác ABC quanh đường thẳng AH ta thu được khối nón có thể tích bằng bao nhiêu?
A. 205,89cm3
B. . 617,66cm3
C. 65,14cm3
D. 65,54cm3