Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Cho ∆ABC vuông tại A, đường cao AH. Biết HB = 3,6cm, HC = 6,4cm. a) Tính AB, AC, AH. b) Kẻ HE vuông góc AB, HF vuông góc AC. Tính EF. c) C/m AB × AE = AC × AF. d) C/m ∆AEF và ∆ABC đồng dạng.

Gia Huy
22 tháng 6 2023 lúc 6:58

a) \(BC=BH+HC=3,6+6,4=10\left(cm\right)\)

Tam giác ABC vuông tại A, đường cao AH có:

\(AB^2=BC.BH\\ \Rightarrow AB=\sqrt{BC.BH}=\sqrt{10.3,6}=6\left(cm\right)\)

Tương tự:

\(AC=\sqrt{BC.CH}=\sqrt{10.6,4}=8\left(cm\right)\)

Ta có: \(AH^2=BH.CH\)

\(\Rightarrow AH=\sqrt{BH.CH}=\sqrt{3,6.6,4}=4,8\left(cm\right)\)

b) Tứ giác AEHF là hình chữ nhật (tứ giác có 3 góc vuông) nên EF = AH = 4,8 (cm)

c) Tam giác AHB vuông tại H có EH là đường cao (gt) \(\Rightarrow AH^2=AB.AE\)

Tương tự tam giác AHC ta có \(AH^2=AC.AF\Rightarrow AB.AE=AC.AF\)

Xét tam giác AEF và tam giác ABC có:

\(\widehat{FAE}.chung\)

\(\dfrac{AF}{AB}=\dfrac{AE}{AC}\left(vì.AB.AE=AC.AF\right)\)

Do đó tam giác AEF đồng dạng tam giác ABC.


Các câu hỏi tương tự
Thảo Phươngg Nguyễnn
Xem chi tiết
nguyen la nguyen
Xem chi tiết
Tuổi Thanh Xuân
Xem chi tiết
Vân Nguyễn
Xem chi tiết
Kim Chi
Xem chi tiết
ngô trần liên khương
Xem chi tiết
luynh
Xem chi tiết
hanh phan
Xem chi tiết
ミ★кнôиɢ ¢ó ɢì★彡
Xem chi tiết