Chứng minh phân thức sau tối giản: \(\frac{3n^2+5n+1}{8n^2+7n+1}\)
Chứng minh phân thức sau tối giản với mọi số tự nhiên n: \(\frac{3n^2+5n+1}{8n^2+7n+1}\)
Gọi d là UCLN của \(3n^2+5n+1\left(and\right)8n^2+7n+1\)
\(\Rightarrow\hept{\begin{cases}3n^2+5n+1⋮d\\8n^2+7n+1⋮d\end{cases}=>8\left(3n^2+5n+1\right)-3\left(8n^2+7n+1\right)⋮d}\)
\(\Rightarrow24n^2+40n+8-24n^2-21n-3⋮d\)
\(=>19n-5⋮d\)
do 19 zà 5 là số nguyên tố =>không chia hết cho d
=>p.số tối giản
Với mọi số tự nhiên n , Chứng minh rằng các phân số sau đây tối giản:
a)\(\frac{2n+2}{8n+7}\)
b) \(\frac{5n+4}{15n+11}\)
c)\(\frac{4n-3}{16n-1}\)
d)\(\frac{3n+5}{5n+8}\)
e)\(\frac{6n+7}{7n+8}\)
a) Gọi (2n+2,8n+7) là d \(\left(d\inℕ^∗\right)\)
Vì (2n+2,8n+7) là d
\(\Rightarrow\hept{\begin{cases}2n+2⋮d\\8n+7⋮d\end{cases}}\)
\(\Rightarrow\)(2n+2)-(8n+7)\(⋮\)d
\(\Rightarrow\)(8n+8)-(8n+7)\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
\(\Rightarrow\)d=1
\(\Rightarrow\)(2n+2,8n+7)=1 nên tử số và mẫu số là số nguyên tố cùng nhau
\(\Rightarrow\frac{2n+2}{8n+7}\)là phân số tối giản
Vậy \(\frac{2n+2}{8n+7}\)là phân số tối giản.
Các phần sau tương tự.
gọi d là ƯC(5n + 4; 5n + 11)
\(\Rightarrow\hept{\begin{cases}5n+4⋮d\\5n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+12⋮d\\15n+11⋮d\end{cases}}}\)
\(\Rightarrow15n+12-15n-11⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{\pm1\right\}\)
\(\Rightarrow\frac{5n+4}{5n+11}\) là phân số tối giản
Gọi d là ƯCLN của 2n + 2 và 8n + 7
Ta có: \(2n+2⋮d;8n+7⋮d\)
=> \(4\left(2n+2\right)⋮d;8n+7⋮d\)
=> \(8n+8⋮d;8n+7⋮d\)
=> \(8n+8-\left(8n+7\right)⋮d\)
=> \(8n+8-8n-7⋮d\)
=> \(1⋮d\Rightarrow d=1\)
Vì d = 1 => \(\frac{2n+2}{8n+7}\)là phân số tối giản
b, Gọi d là ƯCLN của 5n + 4 và 15n + 11
Ta có: \(5n+4⋮d;15n+11⋮d\)
=> \(3\left(5n+4\right)⋮d;15n+11⋮d\)
=> \(15n+12⋮d;15n+11⋮d\)
=> \(15n+12-\left(15n+11\right)⋮d\)
=> \(15n+12-15n-11⋮d\)
=> \(1⋮d\Rightarrow1d=1\)
Vì d = 1 => \(\frac{5n+4}{15n+11}\)là phân số tối giản
CÁC CÂU CÒN LẠI LÀM TƯƠNG TỰ NHA BẠN
Tìm số nguyên n để các phân số sau không tối giản
a, 3n+5/3n+3
b, 2n+3/7n+9
c 5n+6/8n+7
d, 4n+5/5n+4
chứng minh rằng mỗi phân số sau đều tối giản với mọi số n
a)\(\dfrac{2n+1}{3n+2}\)
b) \(\dfrac{3n+2}{5n+3}\)
a: Gọi d=UCLN(2n+1;3n+2)
\(\Leftrightarrow6n+4-6n-3⋮d\)
=>d=1
=>Phân số tối giản
b: Gọi d=UCLN(3n+2;5n+3)
\(\Leftrightarrow15n+10-15n-9⋮d\)
=>d=1
=>Phân số tối giản
chứng minh rằng mỗi phân số sau đều tối giản với mọi số n
a) \(\dfrac{2n+1}{3n+2}\)
b) \(\dfrac{3n+2}{5n+3}\)
a: Gọi d=UCLN(2n+1;3n+2)
\(\Leftrightarrow6n+4-6n-3⋮d\)
=>d=1
=>Phân số tối giản
b: Gọi d=UCLN(3n+2;5n+3)
\(\Leftrightarrow15n+10-15n-9⋮d\)
=>d=1
=>Phân số tối giản
Tìm các số tự nhiên n để các phân số sau là phân số tối giản : P=\(\frac{3n+2}{7n+1}\); Q=\(\frac{2n+7}{5n+2}\).
Chứng minh những phân số sau là tối giản
\(G=\dfrac{2n+3}{4n+1}\) \(H=\dfrac{3n+2}{7n+1}\)
\(I=\dfrac{n+7}{n+2}\)
c: nếu n=3 thì đây ko phải phân số tối giản nha bạn
b: Nếu n=3 thì đây cũng ko phải phân số tối giản nha bạn
a: Nếu n=1 thì đây cũng ko phải phân số tối giản nha bạn
Chứng minh phân thức 7 n - 5 3 n - 2 là tối giản với mọi số tự nhiên n
Hướng dẫn giải:
Gọi d là ƯCLN của 7n - 5 và 3n - 2
⇒ (7n - 5)⋮ d và (3n - 2)⋮ d
⇒ [3(7n - 5) - 7(3n - 2)] = -1⋮ d
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
3n +2 : 5n+3(3n+2 phần 5n+3)
chứng minh phân số sau đây tối giản
Gọi d là ƯC ( 3n + 2 ; 5n + 3 )
=> 3n + 2 ⋮ d => 5.( 3n + 2 ) ⋮ d => 15n + 10 ⋮ d
=> 5n + 3 ⋮ d => 3.( 5n + 3 ) ⋮ d => 15n + 9 ⋮ d
=> [ ( 15n + 10 ) - ( 15n + 9 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯC ( 3n + 2 ; 5n + 3 ) = 1 nên \(\frac{3n+2}{5n+3}\) là p/s tối giản ( đpcm )