Cho M=1+2+2^2+2^3+.....+2^99. CMR số M+1 có 31 chữ số khi viết trong hệ thập phân
Cho M=1+2+2^2+...+2^99. Chứng tỏ rằng M+1 có 31 chữ số khi viết trong hệ thập phân
CMR:2100 có 31 chữ số khi viết trong hệ thập phân
Ta có:210=1024>103=>2100>1030 (1)
Mặt khác: 210=1024<1025=>2100<102510
=>\(\frac{2^{100}}{10^{30}}=\left(\frac{2^{10}}{10^3}\right)^{10}<\left(\frac{1025}{10^3}\right)^{10}=\left(\frac{41}{40}\right)^{10}\)
Ta đã biết:Nếu 0<b<a thì ab+b<ab+a
=>b(a+1)<a(b+1)
=>\(\frac{a+1}{b+1}<\frac{a}{b}\) (*)
Áp dụng (*) ta có: \(\frac{41}{40}<\frac{40}{39}<\frac{39}{38}<...<\frac{32}{31}<\frac{31}{30}\)
do đó \(\frac{2^{100}}{10^{30}}=\left(\frac{41}{40}\right)^{10}<\frac{40}{39}.\frac{39}{38}....\frac{32}{31}.\frac{31}{30}=\frac{4}{3}<2\)
=>2100<2.1030 (2)
Từ (1);(2)=>1030<2100<2.1030
=>2100 có tất cả 31 chữ số,nếu viết trong hệ thập phân thì 2100 có 30 chữ số
A) Trong hệ thập phân, số 8^20 có m chữ số, còn số 25^30 có n chữ số. Tính m+n?
B) CMR khi viết trong hệ thập phân, số 3^20 có 10 chữ số.
chứng minh rằng 2^100 là số có 31 chữ số khi viết kết quả của nó trong hệ thập phân.
chứng minh rằng 2^100 là số có 31 chữ số khi viết kết quả của nó trong hệ thập phân
Ta có:
2^100 = ﴾2^10﴿^10 = 1024^10
10^30 = ﴾10^3﴿^10 = 1000^10
Vì 1024^10 > 1000^10 nên 2^100 > 10^30 ﴾1﴿
Lại có:
2^100 = 2^31.2^63.2^6 = 2^31.512^7.64
và 10^31 = ﴾2.5﴿^31 = 2^31.5^31 = 2^31.5^28.5^3 = 2^31.625^7.125
Vì 2^31.512^7.64 < 2^31.625^7.125 nên 2^100 < 10^31﴾2﴿
Từ ﴾1﴿ và ﴾2﴿ => 2^100 viết trong hệ thập phân có 31 chữ số
Vậy số 2^100 viết trong hệ thập phân có 31 chữ số ﴾đpcm﴿
NHỚ TK MK NHA,MK ĐANG ÂM ĐIỂM
bạn ơi ko hiểu đoạn 2^100=2^31.2^63.2^6 = 2^31.512^7.64
bạn ơi ko hiểu đoạn 2^100 = 2^31,2^63,2^6=2^31.512^7.64
Chứng minh rằng : Số \(2^{100}\) viết trong hệ thập phân có 31 chữ số
Ta có \(2^{100}=\left(2^{10}\right)^{10}=1024^{10}>1000^{10}=\left(10^3\right)^{10}=10^{30}\).
Ta chứng minh \(2^{100}< 10^{31}\Leftrightarrow\dfrac{1024^{10}}{1000^{10}}< 10\).
Ta có \(\dfrac{1024^{10}}{1000^{10}}< \dfrac{1025^{10}}{1000^{10}}=\left(\dfrac{41}{40}\right)^{10}\).
Dễ thấy \(\dfrac{41}{40}< \dfrac{40}{39}< ...< \dfrac{32}{31}\Rightarrow\left(\dfrac{41}{40}\right)^{10}< \dfrac{41}{40}.\dfrac{40}{39}...\dfrac{32}{31}=\dfrac{41}{31}< 10\Rightarrow\dfrac{1024^{10}}{1000^{10}}< 10\).
Do đó \(2^{100}\) viết trong hệ thập phân có 31 chữ số.
chứng minh 2100 là số có 31 chữ số khi viết kết quả của nó trong hệ thập phân ?
Cho phân số : 3/7
Nếu viết số thập phân trên ra thành số thập phân có phần thập phân lần lượt là 1 chữ số; 2 chữ số; 3 chữ số; ...; đến 99 chữ số thì khi đó tích của các số thập phân trên có bao nhiêu chữ số ở phần thập phân?
1 . Tìm số tự nhiên n có 16 ước , biết n chia hết cho 6 và n chia hết cho 125
2. Cho M = 1 + 2 + 22 + 23 +....+ 299. CMR : M + 1 có 31 chữ số .