Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Tiến	Khánh
Xem chi tiết
Yen Nhi
20 tháng 2 2022 lúc 22:04

`Answer:`

Tam giác nào cũng luôn luôn có tổng hai cạnh bất kỳ lớn hơn cạnh còn lại

\(\Leftrightarrow\hept{\begin{cases}a+b>c\\a+c>b\\b+c>a\end{cases}\Leftrightarrow\hept{\begin{cases}c\left(a+b\right)>c^2\\b\left(a+c\right)>b^2\\a\left(b+c\right)>a^2\end{cases}}}\)

`<=>c(a+b)+b(a+c)+a(b+c)>a^2+b^2+c^2`

`<=>ca+cb+ab+bc+ab+ac>a^2+b^2+c^2`

`<=>2(ab+bc+ac)>a^2+b^2+c^2`

Khách vãng lai đã xóa
Kenny Hoàng
Xem chi tiết
phạm tiến dũng
Xem chi tiết
Phạm Thị Thùy Linh
8 tháng 4 2019 lúc 21:14

Vì a,b,c là 3 cạnh của 1 tam giác 

\(\Rightarrow\)\(a+b>c\)( bất đẳng thức tam giác)

\(\Rightarrow\)\(ac+bc>c^2\)( nhân 2 vế với c )

Tương tự ta có :

\(ba+ca>a^2\)

\(cb+ab>b^2\)

Công 2 vế lại ta có : \(ac+bc+ba+ca+cb+ab>a^2+b^2+c^2\)

\(\Leftrightarrow2\left(ab+bc+ca\right)>a^2+b^2+c^2\)

Endou Mamoru
8 tháng 4 2019 lúc 21:23

áp dụng bất đẳng thức tam giác 

=>a+b>=c

b+c>=a

a+c>=b

=>c^2<=ac+bc

a^2<=ab+ac

b^2<=ab+bc

=>a^2+b^2+c^2<+2*(ab+bc+ac)

=>đfcm

TFboys_Lê Phương Thảo
Xem chi tiết
Hoàng Lê Bảo Ngọc
23 tháng 5 2016 lúc 19:03

Ta có : \(ab+bc+ac\le a^2+b^2+c^2\Leftrightarrow2\left(ab+bc+ac\right)\le2\left(a^2+b^2+c^2\right)\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Vì BĐT cuối luôn đúng nên ta có : \(a^2+b^2+c^2\ge ab+bc+ac\)

Theo Bất đẳng thức tam giác ta có : 

\(a< b+c\Rightarrow a.a< a\left(b+c\right)\Leftrightarrow a^2< ab+ac\) (1)

\(b< a+c\Rightarrow b.b< b\left(a+c\right)\Leftrightarrow b^2< ab+bc\)(2)

\(c< a+b\Rightarrow c.c< c\left(a+b\right)\Leftrightarrow c^2< ac+bc\)(3)

Cộng (1) , (2) , (3) theo vế ta được : \(a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)

Từ đó suy ra đpcm

Nguyễn Thị Ngọc Ánh
23 tháng 5 2016 lúc 18:53

Nếu em lên lớp 7 thì em sẽ giúp

TFboys_Lê Phương Thảo
23 tháng 5 2016 lúc 18:55

Nguyễn Thị Ngọc Ánh k lm thì biến đừng hòng kiếm

Lộc Phạm Vũ
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
16 tháng 3 2023 lúc 22:49

Ta có: `a, b, c` là các cạnh của tam giác

`-` Theo bất đẳng thức tam giác ta có: `A+B>C -> AB+AC>A^2`

Tương tự vế trên 

`-> CA+CB>C^2 ; AB+BC>B^2`

Cộng tổng tất cả các vế trên: `AC+BC+AB+AC+AB+BC > A^2+B^2+C^2`

`-> 2 (AB+AC+BC) > A^2+B^2+C^2 (đpcm)`

Nguyễn Hoàng Dũng
Xem chi tiết
pham trung thanh
Xem chi tiết
Bui Cam Lan Bui
Xem chi tiết
Trần Thị Loan
5 tháng 10 2015 lúc 22:06

a; b; c là 3 cạnh của tam giác => |a - c| < b ; |a - b| < c ; |b - c| < a

=> (|a - c|)2 < b2 => a2 - 2ac + c< b2  (1)

(|a - b|)2 < c=> a- 2ab + b< c2   (2)

(|b - c|)2 < a2 => b2 - 2bc + c< a2   (3)

Cộng từng vế của  (1)(2)(3) ta được: 2(a2 + b+ c2) - 2(ab + bc + ca) < a+ b+ c2

=> a+ b+ c< ab + bc + ca (đpcm)

Hà Hoài Thư
Xem chi tiết