So sánh S= 1+2+2^2+2^3+...+2^100 và 2^101
Cho S=1+2+2^2+2^3+.....2^100 so sánh S với 2^101
2S=2+2^2+2^3+...+2^101
2S-S=2^101-1
S=2^101-2<2^101
hok tốt
\(S=1+2+2^2+\cdot\cdot\cdot+2^{100}\)
\(\Rightarrow2S=2+2^2+2^3+\cdot\cdot\cdot+2^{101}\)
\(\Rightarrow2S-S=\left(2+\cdot\cdot+2^{101}\right)-\left(1+\cdot\cdot\cdot+2^{100}\right)\)
\(\Rightarrow S=2^{101}-1\)<\(2^{101}\)
\(\Rightarrow S\)<\(2^{101}\)
S = 1 + 2 + 22 + .... + 2100
=> 2S = 2 + 22 + 23 + ... + 2101
Lấy 2S trừ S theo vế ta có :
2S - S = (2 + 22 + 23 + ... + 2101) - (2 + 22 + 23 + ... + 2101)
S = 2101 - 1
=> S < 2101
cho S = 1 + 3 + 3^1 + 3^2 + 3^3+...+3^100
So sánh S và 3^101
Ta có:
\(S=1+3+3^1+3^2+...+3^{101}\)
\(\Rightarrow3S-S=\left(3+3^2+3^3+3^4+...+3^{101}\right)-\left(1+3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow S\left(3-1\right)=3^{101}-1\Leftrightarrow S=\frac{3^{101}-1}{3-1}\)
\(\Rightarrow S=\frac{3^{101}-1}{3-1}< 3^{101}\)
so sánh A = 1 + 2^2 + 2^3 + ... + 2^99 + 2^100 và B = 2^101 -1
Ta có \(A=1+2^2+2^3+....+2^{99}+2^{100}\)
\(2A=2+2^3+2^4+2^5+...+2^{100}+2^{101}\)
Suy ra \(2A-A=2^{101}-1=B\)
Do đó A =B
Vậy A =B
A = 1 + 2^2 + 2^3 + ... + 2^99 + 2^100
2A = 2 + 2^3 + 2^4 + ... + 2^100 + 2^101
2A - A = ( 2 + 2^3 + 2^4 + ... + 2^100 + 2^101 ) - ( 1 + 2^2 + 2^3 + ... + 2^99 + 2^100 )
A = 2^101 - 1
Vì A = 2^101 - 1 và B = 2^101 - 1
=> A = B
Vậy A=B
A=1+2^2+2^3+...+2^99+2^100
2A=2+2^3+2^4+...+2^100+2^101
2A-A=(2+2^3+2^4+...+2^100+2^101)-(1+2^2+2^3+...+2^99+2^100)
A=2^101-[2-(1+2^2)]
A=2^101-3
Vậy A=2^101-3 và B=2^101-1
=> A<B
Bài 1: Cho S=1+2^2+2^3+...+2^100
a)tính S
b)so sánh S với 2^101
Ai nhanh đúng tick ngay
câu a) vào đây xem nhé
https://olm.vn/hoi-dap/question/122892.html
so sánh A=100+101 phần 101-100 và B=100^2+101^2 phần 101^2-100^2
So sánh A = 1 + 1/(√2) + 1/(√3) + ... + 1/(√100) và B = 2√(101) - 1
ta có \(\frac{1}{\sqrt{x}}\)= \(\frac{2}{2\sqrt{x}}\)< \(\frac{2}{\sqrt{x}+\sqrt{x-1}}\)= 2(\(\sqrt{x}-\sqrt{x-1}\))
Áp dụng vào A \(\Rightarrow\)A < 1 + 2(\(\sqrt{2}-\sqrt{1}\)) + 2(\(\sqrt{3}-\sqrt{2}\)) + ... + 2(\(\sqrt{100}-\sqrt{99}\)) = 1 - 2 + \(2\sqrt{100}\)= \(2\sqrt{100}-1\)< \(2\sqrt{101}-1=B\)
\(\Rightarrow\)A < B
A=1+2^1+2^2+2^3+....+2^100
B=2^101
So sánh A và B
A=1+21+22+23+...+2100
2A=2+22+23+24+...+2101
2A-A=2101-1
A=2101-1
Ta có 2101>2101-1 nên B>A
2A=2+2^2+2^3+2^4+....+2^101
=> 2A-A=(2+2^2+2^3+2^4+....+2^101)-(1+2+2^2+2^3+...+2^100)
<=> A=2^101-1 > B=2^101
2A=2+2^2+...+2^101
=>2A-A=(2+2^2+...+2^101)-(1+2+2^2+...+2^100)
=> A=2^101-1<2^101=B
vậy a<b
SO SÁNH A= 100^100+2/100^99+2 và B = 100^100+3/100^101+3 GIÚP MÌNH Với !!!!!!!!!
Hong bé ơi.Bé hong follow anh mà đòi xin đáp án của anh à
So sánh A=\(\frac{101+100}{101-100}\)và B=\(\frac{101^2+100^2}{101^2-100^2}\)