cho tam giác abc vuông tại A kẻ đường cao AH, phân giác BD. kẻ AI vuông gócc với BD( I thuộc BD) AI cắt BC ở K. Gọi E là giao điểm của AH và BD. c/m
a) AB=BK
b) AD=DK
c) DK vuông góc với BC
d)EK song song AC
HEPL ME!!!
Cho tam giác ABC vuông tại A, phân giác BD. Kẻ AE vuông góc với BD( E thuộc BD), AE cắt BC ở K.
1, Tam giác ABK là tam giác gì ?
2,CM DK vuông góc với BC
3,Kẻ AH vuông góc với B( H thuộc BC). CM: AK là tia phân giác của góc HAC
4,Gọi I là giao điểm của AH và BD.CMR : IK song song AC
ai giúp mình tich cho
Cho tam giác ABC có góc A = 90, đường phân giác BD kẻ AE vuông góc với BD ( E thuộc BD), AE cắt BC ở K
a)Tam giác ABK là tam giác gì?
b) CMR DK vuông góc với BC
c)Kẻ AH vuông góc với BC(h thuộc BC). CMR AE là tia phân giác của góc HAC
d)Gọi I là giao điểm của AH và BD. CMR Ik song song AC
cho tâm giác ABC vuông ở A , tia phân giac góc B cắt AC tại D. Kẻ AE vuông góc với BD (E thuộc BD) AE cắt BC ở K. Kẻ AH vuông góc với BC (H thuộc BC) gọi I là giao điểm của AH và BD
a, CMR: DK vuông góc với BC
b,IK song song AC
cho tam giác ABC vuông tại A đường phân giác BD kẻ AE vuông góc với BD tại E AE cắt BC ở K
a, Chứng Minh AB=BK
b,Chứnh minh DK vuông góc với BC
c, Kẻ AH vuông góc Bc tại J gọi I là giao điểm của AH và BD chứng minh IKsonh sonh AC
Hình thì bạn tự vẽ nha =))) Mik xin lỗi
a) Chứng Minh AB=BK
Xét tam giác ABE ( góc AEB = 90o ) và tam giác BEK ( góc BEK = 90o ) có :
B1 = B2 ( vì BD là tia p/giác của BAC )
BE là cạnh huyền chung
=) tam giác ABE = tam giác BEK ( ch - gn )
=) AB = AK ( 2 cạnh tương ứng )
b) Chứnh minh DK vuông góc với BC
Xét tam giác ABD và Xét tam giác KBD có :
AB = BK (cm ở câu a )
B1 = B2 vì ( BD là tia p/giác của BAC )
BD là cạnh chung
=) tam giác ABD = tam giác KBD ( cgc )
=) góc BKD = góc BAD ( 2 góc tương ứng )
mà góc BAD = 90o
=) góc KBD = 90o
=) DK vuông góc vs BC
c) CM IK // AC
a) Chứng Minh AB=BK
Xét tam giác ABE ( góc AEB = 90o ) và tam giác BEK ( góc BEK = 90o ) có :
B1 = B2 ( vì BD là tia p/giác của BAC )
BE là cạnh huyền chung
=) tam giác ABE = tam giác BEK ( ch - gn )
=) AB = AK ( 2 cạnh tương ứng )
b) Chứnh minh DK vuông góc với BC
Xét tam giác ABD và Xét tam giác KBD có :
AB = BK (cm ở câu a )
B1 = B2 vì ( BD là tia p/giác của BAC )
BD là cạnh chung
=) tam giác ABD = tam giác KBD ( cgc )
=) góc BKD = góc BAD ( 2 góc tương ứng )
mà góc BAD = 90o
=) góc KBD = 90o
=) DK vuông góc vs BC
c) CM IK // AC
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC
1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath
cho tam giác ABC góc A=90 độ đường cao AH, phân giác BD (D thuộc AC)
a) CM tam giác BAH đồng dạng với tam giác BCA và góc BAH =góc BAC b,gọi I là giao điểm của AH và BD CM: BI.BC=BA.BD
c, kẻ CE vuông góc BD cắt BA tại M .CM: AI song song với MD và BA.BM+CE.CM=BC^2
mn ơi cứu mik với mik
a: Xét ΔBAH vuông tại H và ΔBCA vuông tại A có
góc B chung
=>ΔBAH đồng dạng vói ΔBCA
b: Xét ΔBAD và ΔBHI có
góc BAD=góc BHI
góc ABD=góc HBI
=>ΔBAD đồng dạng vói ΔBHI
=>BA/BH=BD/BI
=>BA*BI=BH*BD
Cho tam giác ABC có góc A = 90 độ, phân giác của góc B cắt AC tại D, lấy điểm K thuộc cạnh BC sao cho BK = AB, tia KD cắt tia BA tại E
a, CMR : AD = DK và EK vuông góc với BC
b, Chứng minh 2 tam giác ADE và KDC bằng nhau
c, Chứng minh AK vuông góc với BD tại M ( M là giao điểm của AK và BD )
d, Kẻ AH song song với EK ( H thuộc BM ). Chứng minh KH vuông góc với AB
a, Xét tam giác BAD và tam giác BKD có :
BD : cạnh chung
BA = BK
Góc ABD = Góc DBK
==> Tam giác ABD = Tam giác KBD ( C - G - C )
==> AD = DK ( đpcm )
b, Xét tam giác ADE và tam giác KDC có :
AD = DK
Góc ADE = Góc KDC
Góc DAE = Góc DKC
==> Tam giác ADE = Tam giác KDC ( G - C - G )
c, Xét tam giác BAM và tam giác BKM có :
BM : cạnh chung
BA = BK
Góc ABM = Góc MBK
==> Tam giác ABM = Tam giác KBM ( C - G - C )
==> Góc BMA = Góc BMK Mà Góc AMK = 180 độ
==> Góc BMA = Góc BMK = 90 độ
==> AK vuông góc với BD
Ta có hình vẽ
Tớ chỉ vẽ hình thôi còn bài tự làm nhé! g
Gợi ý:
a) trước tiên ta xét Tam giác chứa cạnh AD và DK
Còn Muốn CM EK vuông góc vói BC thì CM nó tạo thành một góc 90 độ
b) chúng minh theo các trường hợp (c.g.c) (g.c.g) (c.c.c)
Cho tam giác ABC vuông tại A , đường phân giác BD . kẻ AE vuông góc BD ,
AE cắt BC ở K .
a, CM : tam giác ABK cân tại B
b, CM : DK vuông góc vs BC
c, KẺ AH vuông góc BC . CM : AK là tia Phân giác của Góc HAC
d, gọi I là giao điểm của AH và BD. Cm : IK song song AC
giúp mik nha
a) xét ABE vuông tại E và KBE vuông tại E
có góc ABE =KBE(gt)
BE chug
=> ABE=KBE ( ch -gn)
=> AB=KB( cạnh t/ư)
=> ABK cân tại B
b) xét ABD và KBD
có AB=KB
ABD=KBD
BD chung
=> ABD = KBD( cgc)
=> BAD = BKD
mà BAD = 90 độ
=> BKD =90 độ
hay DK vuông góc BC tại K