Chứng minh rằng 76+75-74 chia hết cho 55
Cho 2a + 5 chia hết cho 7 . Chứng minh rằng 10a+11 chia hết cho 7
a + 5b chia hết 3 . Chứng minh rằng : 5a+3 chia hết 3
\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)
\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)
b, tự tương
\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\) ( vì \(28a+28⋮7\) )
\(\Leftrightarrow30a+33⋮7\)
\(\Leftrightarrow3.\left(10a+11\right)⋮7\)
\(\Leftrightarrow10a+11⋮7\) ( vì \(\left(3;7\right)=1\) )
Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)
Câu b bn xem lại đề hộ mk chút nhé!
Chứng minh rằng: 5n+1-55n chia hết cho 54 (n là số tự nhiên)
Ta có :
\(55^{n+1}-55^n=55^n\times55-55^n\)
\(=55^n\left(55-1\right)\)
\(=55^n\times54\) chia hết cho 54
K NHÉ
5) Chứng minh rằng:
a) 76 + 75 – 74 chia hết cho 55 b) 165 + 215 chia hết cho 33
c) 817 – 279 – 913 chia hết 405
a) \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\left(49+7-1\right)=7^4.55⋮55\)
b) \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\left(32+1\right)=2^{15}.33⋮33\)
c) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{22}.3^4.5=3^{22}.405⋮405\)
a: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)
b: \(=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)
c: \(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}\cdot5=3^{22}\cdot405⋮405\)
a) 7^0 = 0 ; 7^1=7 ; 7^2 = 49 ; 7^3 = 343 ; 7^4=2401 ; 7^5 = 16807 ;.....
⟹ 7 có số mũ là số chẵn thì thường có chữ số tận cùng là 1,9
7^6 =......9 ; 7^5=......7 ; 7^4=......1
⟹ ....9 +.....7-....1=5
mà 55=5.11⟹ 7^6 +7^5-7^4 : 5 thì : 55
mà số chia hết cho 5 thì có tận cùng là 0,5 .phéptính 7^6+7^5=7^4 có tận cùng là 5 ⟹ 7^6+7^5-7^4 : 55
vậy 7^6+7^5-7^4 : 55
a)chứng mình rằng : 14^14-1 chia hết cho 13
b)chứng minh rằng : 2015^2016 -1 chjia hết cho 2014
a) Ta sẽ dùng cách cm gián tiếp:
Cho A = 14^13 + 14^12 + .... +14 + 1
=> 14A = 14^14 + 14^13 +...+14^2 +14
=> 14A - A = (14^14 + 14^13 +...+14^2 +14) - (14^13 + 14^12 + .... +14 + 1)
13A = 14^14 - 1
Vì 13A chia hết cho 13 nên 14^14 - 1 chia hết cho 13 (ĐPCM)
b) Tương tự như vậy:
Cho B = 2015^2015 + 2015^2014 + .... +2015 + 1
=> 2015B = 2015^2016 + 2015^2015 +...+2015^2 +2015
=> 2015B - B = (2015^2016 + 2015^2015 +...+2015^2 +2015) - (2015^2015 + 2015^2014 + .... +2015 + 1)
2014B = 2015^2016 - 1
Vì 2014B chia hết cho 2014 nên 2015^2016 - 1 chia hết cho 2014 (ĐPCM)
Bạn học đồng dư rồi đúng ko? ình sẽ giải theo cách đồng dư nhé :
a, 14^14đồng dư 1^14đồng dư 1(mod13)
Suy ra 14^14 -1 đồng dư 1-1 đồng dư 0 (mod13) (đpcm)
b, tương tự bạn nhé 2015^2016 đồng dư 1^2016 đồng dư 1
...........rồi bạn suy ra nhé
Cho M=75.(42013+42012+...+43+42+1)+25. Chứng minh rằng M chia hết cho 100
M=75.(42013+42012+...+43+42+1)+25
=75.42013 + 75.42012 + ...+ 75.43 + 75.42 + 75.1 + 25
=75.4.42012 + 75.4.42011 +...+ 75.4.42 + 75.4.4 + (75+25)
=300.42012 + 300.42012 +...+ 300.42 + 300.4 + 100
=100.( 3.42012 + 3.42012 +...+ 3.42 + 3.4 + 1) --- điều cần phải chứng minh
Cho M+5n chia hết cho 11 .Chứng minh rằng 6m+8n chia hết cho 11
Cho 6x+3y chia hết cho 31 . Chứng minh rằng x+7y chia hết cho 31
Đặt A = 6x + 3y ; B = x + 7y
Xét hiệu 6B - A = 6 . ( x + 7 y ) - ( 6x + 3y )
= 6x + 42y - 6x - 3y
= 39y
Chị thấy đến đây chị ko làm đc nữa. Em có chép nhầm đề bài ko vậy .
Chi co the lam lại được không em chưa hiểu?
cho 3a + 2b chia hết cho 17. Chứng minh rằng 10a+b chia hết cho 17
taco;17achia het cho17
suy ra 17a+3a+b chia het cho17
suy ra20a+2bchia het cho17
rút gọn cho 2
suyra 10a+b chia hết cho 17
ta có:3a+2b chia hết cho 17
=> a và b chia hết cho 17
<=>17a+3a+b cũng chia hết cho 17
=>20a+2b (+ 2 vế) chia hết cho 17)
<=>20:2(a+b) chia hết cho 17
=>10a+b chia hết cho 17
chứng minh rằng: Nếu (5a+3b) chia hết cho 13 thì (4a+31b) chia hết cho 13
Mình có cách hay hơn nè!
=> ( 5a+3b ) chia hết cho 13
=> 30a + 18b chia hết cho 13
Mà: 26a chia hết cho 13
13b chia hết cho 13
=> 30a - 26a + 18b + 13b chia hết cho 13
=> 4a +31b chia hết cho 13
=> đpcm