Tìm số dư của A=3\(^{2020}\) +4\(^{2020}\) khi chia cho 11, khi chia cho 13
Tìm số dư của A=32020+42020 khi chia cho
a) 11
b) 13
số dư
3^2020+4^2020
chọn ý a
11 ko biết đúng ko anh thể nhỉ
ok
cho A= 1+3+3^2+3^3+..........+3^2020
a) tính gọn a
b) tìm số dư khi chia A cho 4 và 13
c) tìm chữ số tận cùng của A
tui cần
gấp nhé
a,3A=3+3^2+3^3+...+3^2020
=>3A-A=(3+3^2+3^2+3^3+...+3^2021)-(1+3+3^2+3^3+...+3^2020)
=>2A=3^2021-1=>A=\(\frac{3^{2021}-1}{2}\)
mình cần câu b và c cơ
tìm số dư của số A khi chia cho 7 biết A= 2020\(^{2021}\)
Lời giải:
Áp dụng định lý Fermat nhỏ thì:
$2020^6\equiv 1\pmod 7$
$\Rightarrow (2020^6)^{336}.2020^4\equiv 1^{336}.2020^4\equiv 2020^4\pmod 7$
Có:
$2020\equiv 4\pmod 7$
$\Rightarrow 2020^4\equiv 4^4\equiv 256\equiv 4\pmod 7$
$\Rightarrow A\equiv 2020^4\equiv 4\pmod 7$
Vậy $A$ chia $7$ dư $4$
Cho các số nguyên a,b,c thỏa mãn M=\(a^{2020}+b^{2020}+c^{2020}\) chia 30 dư 7 tìm số dư của P=\(a^{2024}+b^{2024}+c^{2024}\) khi chia 30.
Xét \(A=a^{2024}-a^{2020}=a^{2020}\left(a^4-1\right)\)
- Chứng minh A chia hết cho 2:
+) Nếu a lẻ thì \(a-1\)chẵn nên A chia hết cho 2
+) Nếu a chẵn thì \(a^{2020}\)chẵn nên A chia hết cho 2
- Chứng minh A chia hết cho 3:
+) Nếu a chia hết cho 3 thì \(a^{2020}\)chia hết cho 3 nên A chia hết cho 3
+) Nếu a không chia hết cho 3 thì \(a^2\equiv1\)(mod 3) \(\Rightarrow a^4\equiv1\)(mod 3). Vậy \(a^4-1\)chia hết cho 3 nên A chia hết cho 3
- Chứng minh A chia hết cho 5:
+) Nếu a chia hết cho 5 thì \(a^{2020}\)chia hết cho 5 nên a chia hết cho 5
+) Nếu a không chia hết cho 5 thì \(a^2\equiv1,4\)(mod 5) \(\Rightarrow a^4\equiv1\)(mod 5). Vậy \(a^4-1\)chia hết cho 5 nên A chia hết cho 5
Từ đây ta có A chia hết cho 2, 3, 5 vậy A chia hết cho 30 \(\Rightarrow a^{2024}\equiv a^{2020}\)(mod 30)
\(\Rightarrow a^{2020}+b^{2020}+c^{2020}\equiv a^{2024}+b^{2024}+c^{2024}\equiv7\)(mod 30)
Vậy \(a^{2024}+b^{2024}+c^{2024}\)chia 30 dư 7
Cho A=1+7+7^2+7^3+…+7^2019+7^2020. Tìm số dư của A khi chia A cho 57
Giúp mình với!
\(A=1+7+7^2+7^3+...+7^{2019}+7^{2020}\\ \left(1+7+7^2\right)+7^3\left(1+7+7^2\right)+...+7^{2018}\left(1+7+7^2\right)\\ \left(1+7+7^2\right)\left(1+7^3+7^6+...+7^{2018}\right)\\ 57\left(1+7^3+7^6+...+7^{2018}\right)⋮57\)
A=1+7+72+...+72019+72020
=1+(7+72+73)+(74+75+76)+...+(72018+72019+72020)
=1+7(1+7+72)+74(1+7+72)+...+72018(1+7+72)
=1+7x57+74x57+...+72018x57=1+57(7+74+...+72018)
=>A chia cho 57 dư 1.vì 57(7+74+...+72018)⋮57.
a, Tìm số dư khi chia A cho 5 biết A = 20202020 – 31717 + 213203
A = \(2020^{2020}-317^{17}+213^{203}\)
Ta có: 2020 chia hết cho 5
317 chia 5 dư 2 => \(317^{17}\)có cùng số dư với \(2^{17}\)khi chia cho 5 mà \(2^{17}=2^{16}.2=4^8.2=16^4.2\) chia 5 sư 2
=> \(317^{17}\) chia 5 sư 2
\(213\)chia 5 dư 3 => \(213^{203}\)có cùng số dư với \(3^{203}\)khi chia cho 5 mà \(3^{203}=3^{202}.3=9^{101}.3=9^{100}.9.3=81^{50}.27\) chia 5 dư 2 vì \(81^{50}\)chia 5 dư 1 và 27 chia 5 dư 2
=> \(A\)chia 5 dư 0 - 2 + 2 = 0
biết a2019 chia cho 101 dư 3 và a2020 chia cho 101 dư 98 . Tìm dư khi chia a cho 101
e hèm ddm t đang định tìm câu này lại gặp m thg chos
Cho S= 2+2.2^2+3.2^3+...+2019.2^2019
a, Chứng tỏ S+2016 chia hết cho 2^2020+1
b, Tìm số dư khi chia S cho 8
giúp với , làm đc cho 1 like
2,chứng minh rằng (n+2019^2020)*(n+2020^2020) chia hết cho 2 với mọi số tự nhiên n
3,tìm các số tự nhiên có 3 chữ số thỏa mãn: Khi viết tiếp số đó vào bên phải số 679 thì đc số mới là số có 6 chữ số chia hết cho các số 5,6,7,9
có bao nhiêu số tự nhiên gồm 4 chữ số có tính chất sau:số đó chia hết cho 11 và có tổng các chữ số của nó cũng chia hết cho 11