chứng minh rằng 2^2020 - 2^2016 chia hết cho 15 . Nhớ viết cách làm nữa
Chứng minh rằng 22020-22016 chia hết cho 15
22020 - 22016
= 22016 . ( 24 - 1 )
= 22016 . 15 chia hết cho 15
Vậy 22020 - 22016 chia hết cho 15
Ta có :
22020 - 22016
= 22016 . ( 24 - 1 )
= 22016 . 15 \(⋮\)15
Vậy ...
Bài 1 : Chứng minh rằng mọi số tự nhiên n :
a) 24n + 2 + 1 chia hết cho 5
b) 92n + 1 + 1 chia hết cho 10
Nhớ viết cả cách làm ra nữa nhá
Ai xong trước mình tíck cho
Chứng minh rằng
a) A = 3 + 32 + 33 + ...+39 + 310 . Chứng minh A chia hết cho 4
b) B = 22020 - 22016 . Chứng minh B chia hết cho 15
c) C = 2 + 22 + 23 + ... + 260 . Chứng minh C + 7
d) Chứng tỏ rằng 102016 + 8 + 9
\(a,\)Ta có:
\(A=3+3^2+3^3+...+3^{10}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^9\left(1+3\right)\)
\(=3\cdot4+3^3\cdot4+...+3^9\cdot4\)
\(=4\left(3+3^3+...+3^9\right)⋮4\)
\(\Rightarrow3+3^2+3^3+...+3^{10}⋮10\\ \Rightarrow A⋮10\)
\(\Rightarrow\)ĐPCM
C,GHÉP BA SỐ LIÊN TIẾP LẠI RỒI LẤY SỐ HẠNG ĐẦU TIÊN RA LÀM CHUNG VÀ TỒNG TRONG NGOẶC ĐƯỢC 7.
Cho S = 2 mũ 2020 + 2 mũ 2019+ 2 mũ 2018+ 2 mũ 2017+2 mũ 2016+2 mũ 2015 +2 mũ 2014+ 2 mũ 2013.
Chứng tỏ rằng S chia hết cho 15 ?
Ta có : S=22020+22019+22018+22017+22016+22015+22014+22013
=22013(27+26+25+24+23+22+2+1)
=22013.255
Vì 255\(⋮\)15 nên 22013.255\(⋮\)15
hay S\(⋮\)15
Vậy S\(⋮\)15.
Chứng minh rằng: B= 2+ 2^2 + 2^3+ ...+ 2^2016 chia hết cho 15
B = 2 + 22 + 23 + ... + 22016 (gồm 2016 số hạng)
B = (2 + 22 + 23 + 24) + ... + (22013 + 22014 + 22015 + 22016) (gồm 504 cặp số hạng)
B = 2(1 + 2 + 22 + 23) + ... + 22013(1 + 2 + 22 + 23)
B = 2.15 + ... + 22013.15
B = (2 + ... + 22013) .15 \(⋮\)15
B = 2 + 22 + 23 + ... + 22016
= (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28)... + (22013 + 22014 + 22015 + 22016)
= 2(1 + 2 + 4 + 8) + 25(1 + 2 + 4 + 8)... + 22013(1 + 2 + 4 + 8)
= 2.15 + 25.15 + ... + 22013.15
= 15(2 + 25 + ... + 22013) \(⋮\)15
Cho biểu thức A=\(\left(a^{2020}+b^{2020}+c^{2020}\right)-\left(a^{2016}+b^{2016}+c^{2016}\right)\)với a, b, c là các số nguyên dương. Chứng minh rằng A chia hết cho 30
\(A=a^{2016}\left(a^4-1\right)+b^{2016}\left(b^4-1\right)+c^{2016}\left(c^4-1\right)\)
Xét: \(a^{2016}\left(a^4-1\right)=a^{2015}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\)
Đặt \(B=\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\)
Do \(\left(a-1\right)a\left(a+1\right)\) là tích 3 số nguyên dương liên tiếp nên chia hết cho 6 \(\Rightarrow B⋮6\)
Mặt khác:
\(B=\left(a-1\right)a\left(a+1\right)\left[a^2-4+5\right]\)
\(=5\left(a-1\right)a\left(a+1\right)+\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)
Do \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\) là tích 5 số nguyên liên tiếp nên chia hết cho 5
\(\Rightarrow B⋮5\Rightarrow B⋮30\) (do 5 và 6 nguyên tố cùng nhau)
Hoàn toàn tương tự ta có \(b^{2016}\left(b^4-1\right)⋮30\) và \(c^{2016}\left(c^4-1\right)⋮30\)
\(\Rightarrow A⋮30\)
Chứng minh
b, \(16^5+2^{15}\)chia hết cho 33
nói cách làm nữa nhé
165=(24)5=220=215 * 25
=> 165 + 215 = 215 * 25 +215=215(25 +1)= 215 *33(chia hết cho 33)
Chứng minh rằng :A=1+3+3^2+3^3+3^4+.....+3^2015 chia hết cho 5
B= 2+2^2+2^3+...+2^2016 chia hết cho 15
\(A=1+3+3^2+3^3+3^4+...+3^{2015}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{2012}+3^{2013}+3^{2014}+3^{2015}\right)\)
\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{2012}\left(1+3+3^2+3^3\right)\)
\(=\left(1+3+3^2+3^3\right)\left(1+3^4+...+3^{2012}\right)\)
\(=40\left(1+3^4+...+3^{2012}\right)\)\(⋮\)\(5\)
\(B=2+2^2+2^3+...+2^{2016}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{2013}+2^{2014}+2^{2015}+2^{2016}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+..+2^{2013}\left(1+2+2^2+2^3\right)\)
\(=\left(1+2+2^2+2^3\right)\left(2+2^5+...+2^{2013}\right)\)
\(=15\left(2+2^5+...+2^{2013}\right)\)\(⋮\)\(15\)
Biết 2a+3b chia hết cho 15,chứng minh rằng 9a+6b chia hết cho 12.(làm bằng 2 cách cô mình nói thế)Các bạn giúp mình nha bài khó quá hì!
mình bt giải 1 cách hà
(15a + 15b) chia hết cho 15
( (9a + 6b) + (6a + 9b) ) chia hết cho 15
( (9a+6b) +3(2a+3b) chia hết cho 15 (1)
Theo bài ta có: (2a + 3b) chia hết cho 15
\(\Rightarrow\)3(2a + 3b) chia hết cho 15 (2)
từ (1) và (2)
\(\Rightarrow\) 9a +6b chia hết cho 15