tính giá trị của biểu thức A=(x^5-3x^3-10x+12)/(x^4+7x^2+15) biết:x/(x^2+x+1)=1/4
tính giá trị của biểu thức F= x^5-3x^3-10x+12/x^4+7x^2+15 với x/x^2+x+1=1/4
Tính giá trị của biểu thức \(A=\frac{x^5-3x^3-10x+12}{x^4+7x^2+15}\) với \(\frac{x}{x^2+x+1}=\frac{1}{4}\)
Ta có: \(\frac{x}{x^2+x+1}=\frac{1}{4}\Leftrightarrow4x=x^2+x+1\Leftrightarrow x^2-3x+1=0\)
\(A=\frac{\left(x^5-3x^4+x^3\right)+\left(3x^4-9x^3+3x^2\right)+\left(5x^3-15x^2+5x\right)+\left(12x^2-36x+12\right)+21x}{\left(x^4-3x^3+x^2\right)+\left(3x^3-9x^2+3x\right)+\left(15x^2-45x+15\right)+42x}\)
\(A=\frac{21x}{42x}=\frac{1}{2}\)
Câu1: Tính giá trị của biểu thức A với x=999
A= x^6-x^5(x-1)-x^4(x-1)+x^3(x-1)+x^2(x+1)-x(x-1)+1
Câu 2: Rút gọn biểu thức
a) A=(x+5)(2x-3)-2x(x+3)-(x-15)
b) B=2(x-5)(x+1)+(x+3)-(x-15). Tính giá trị của biểu thức B với x=-3/4
c) C= 5x^2(3x-2)-(4x+7)(6x^2-x)-(7x-9x^3)
Câu2: Chứng minh giá trị của các biểu thức sau không phụ thuộc vào giá trị của biến.
a) -2x(x-5)+3(x-1)+2x^2-13x
b)-x^2(2x^2 - x - 3)+x(x^2+2x^3+3)-3x(x^2+x)+x^3-3x
Câu3: Tìm x, biết
a) 5x^2-5x(x-5)=10x-35.
b) 4x(x - 5) -7x(x - 4) + 3x^2 = 4 - x
Câu4: Tính giá trị biểu thức sau:
a) A=2x(3x^2-2x)+3x^2(1-2x)+x^2-7 với x = -2
b) B=x^5-15x^4+16x^3-29x^2+13x với x =14
Câu 2:
a) \(-2x\left(x-5\right)+3\left(x-1\right)+2x^2-13x\)
\(=-2x^2+10x+3x-3+2x^2-13x\)
\(=\left(-2x^2+2x^2\right)+\left(10x+3x-13x\right)-3\)
\(=0+0-3\)
\(=-3\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
b) \(-x^2\left(2x^2-x-3\right)+x\left(x^2+2x^3+3\right)-3x\left(x^2+x\right)+x^3-3x\)
\(=-2x^4+x^3+3x^2+x^3+2x^4+3x-3x^3-3x^2+x^3-3x\)
\(=\left(-2x^4+2x^4\right)+\left(x^3+x^3-3x^3+x^3\right)+\left(3x^2-3x^2\right)+\left(3x-3x\right)\)
\(=0+0+0+0\)
\(=0\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
Câu 4:
a) \(A=2x\left(3x^2-2x\right)+3x^2\left(1-2x\right)+x^2-7\)
\(A=6x^3-4x^2+3x^2-6x^3+x^2-7\)
\(A=-7\)
Thay \(x=-2\) vào biểu thức A ta có:
\(A=-7\)
Vậy giá trị của biểu thức A là -7 tại \(x=-2\)
b) \(B=x^5-15x^4+16x^3-29x^2+13x\)
\(B=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)
\(B=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)
\(B=-x\)
Thay \(x=14\) vào biểu thức B ta được:
\(B=-14\)
Vậy giá trị của biểu thức B tại \(x=14\) là -14
Câu 3:
a) \(5x^2-5x\left(x-5\right)=10x-35\)
\(\Leftrightarrow5x^2-5x^2+25x=10x-35\)
\(\Leftrightarrow25x=10x+35\)
\(\Leftrightarrow15x=35\)
\(\Leftrightarrow x=\dfrac{35}{15}=\dfrac{7}{3}\)
Vậy nghiệm của phương trình là \(x=\dfrac{7}{3}\)
b) \(4x\left(x-5\right)-7x\left(x-4\right)+3x^2=4-x\)
\(\Leftrightarrow4x^2-20x-7x^2+28x+3x^2=4-x\)
\(\Leftrightarrow8x=4-x\)
\(\Leftrightarrow9x=4\)
\(x=\dfrac{4}{9}\)
Vậy nghiệm của phương trình là \(x=\dfrac{9}{4}\)
Bài 2 :Thực hiện phép tính
a/ (2x – 1)(x2 + 5 – 4) b/ -(5x – 4)(2x + 3)
c/ 7x(x – 4) – (7x + 3)(2x2 – x + 4).
Bài 3: Chứng minh rằng giá trị của biểu thức không phụ thuộc vào giá trị của biến.
a/ x(3x + 12) – (7x – 20) + x2(2x – 3) – x(2x2 + 5).
b/ 3(2x – 1) – 5(x – 3) + 6(3x – 4) – 19x.
Bài 4: Tìm x, biết.
a/ 3x + 2(5 – x) = 0 b/ 5x( x – 2000) – x + 2000 = 0 c/ 2x( x + 3 ) – x – 3 = 0
Bài 5: Tính giá trị các biểu thức sau:
a. P = 5x(x2 – 3) + x2(7 – 5x) – 7x2 với x = - 5
b. Q = x(x – y) + y(x – y) với x = 1,5, y = 10
Bài 6: Rút gọn biểu thức:
a. (6x + 1)2 + (6x – 1)2 – 2(1 + 6x)(6x – 1)
b. 3(22 + 1)(24 + 1)(28 + 1)(216 + 1)
II/ PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
Bài 1: Phân tích đa thức thành nhân tử.
a/ 14x2y – 21xy2 + 28x2y2 b/ x(x + y) – 5x – 5y.
c/ 10x(x – y) – 8(y – x). d/ (3x + 1)2 – (x + 1)2
Bài 2:
a: (2x-1)(x2+5x-4)
\(=2x^3+10x^2-8x-x^2-5x+4\)
\(=2x^3+9x^2-13x+4\)
b: \(=-\left(10x^2+15x-8x-12\right)\)
\(=-\left(10x^2+7x-12\right)\)
\(=-10x^2-7x+12\)
c: \(=7x^2-28x-\left(14x^3-7x^2+28x+3x^2-3x+12\right)\)
\(=7x^2-28x-14x^3+4x^2-25x-12\)
\(=-14x^3+11x^2-53x-12\)
1) phân tích đa thức thành nhân tử :
a) x^2-10x+9 b) x^2-2x-15 c) 3x^2-7x+2 d) x^3-12+x^2
2) tìm gtln hoặc gtnn của R=xy biết :
a) x+y=6. b) x-y=4
3) tìm n€ Z để giá trị Biểu Thức A chia hết cho giá trị Biểu Thức B
a) A=8n^2-4n+1 và B = 2n+1
b) A=4n^3-2n^2-6n+5 và B=2n-1
Toán 8 tập 1 ôn tập chương 1
Bài 1:
a)x2-10x+9
=x2-x-9x+9
=x(x-1)-9(x-1)
=(x-9)(x-1)
b)x2-2x-15
=x2+3x-5x-15
=x(x+3)-5(x+3)
=(x-5)(x+3)
c)3x2-7x+2
=3x2-x-6x+2
=x(3x-1)-2(3x-1)
=(x-2)(3x-1)x^3-12+x^2
d)x3-12+x2
=x3+3x2+6x-2x2-6x-12
=x(x2+3x+6)-2(x2+3x+6)
=(x-2)(x2+3x+6)
Tính giá trị biểu thức :
1/ 5x . (4x2 -7x+1 ) - 2x . ( 10x2 - 2 ) với x = 5
2/ 2x . ( x-y) - y . (y-2x) với x = - 1/3 và y = - 2/3
3/ 3x . ( x-4y ) - (y-5x ). 12/5y với x = -4 và y= -5
1. Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của cac biến x.y
X(3x+12) - (7x-20) - x2( 2x+3) + x(2x2-5)
2. Tính giá trị biểu thức sau bằng cách hợp lí
A= x5-70x4-70x3 -7x2 -70x +34 tại x=71
( gợi ý : thay 70 trong biểu thức bởi x-1
cho hai đa thức M(x)=3x^4-2x^+5x^2-4x+1
N(x)=-3x^4+2x^3-3x^2+7x+5.
a)tính P(x)=M(X)+N(x)
b)tính giá trị cua biểu của P(x)tại x=-2
Sửa đa thức M(x) = 3x4 - 2x3 + 5x2 - 4x + 1
\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)
\(=3x^4-2x^3+5x^2-4x+1-3x^4+2x^3-3x^2+7x+5\)
\(=2x^2+3x+6\)
b, Tại x = -x
< = > 2x = 0 <=> x = 0 thì giá trị của biểu thức P ( x ) = 6