cho đường kính AB. qua C thuộc nửa đừng tròn kẻ tiếp tuyến d
Cho nửa đường tròn tam o đường kính ab, c là 1 điểm thuộc nửa đường tròn. Qua c kẻ tiếp tuyến d vs nửa đường tròn. Kẻ tia ax, by song song vs nhau, cắt d theo thứ tự tại D, E. Chứng minh ab là tiếp tuyến của đường tròn đường kính DE
Cho nửa đường tròn tâm O có đường kính AB, C là một điểm thuộc nửa đường tròn. Qua C kẻ tiếp tuyến d với nửa đường tròn. Kẻ các tia Ax, By song song với nhau, cắt d theo thứ tự tại D, E. Chứng minh rằng AB là tiếp tuyến của đường tròn đường kính DE.
mong mọi giúp với ạ thank
Cho nửa đường tròn tâm O có đường kính AB, C là một điểm thuộc nửa đường tròn. Qua C kẻ tiếp tuyến d với nửa đường tròn. Kẻ các tia Ax, By song song với nhau, cắt d theo thứ tự tại D, E. Chứng minh rằng AB là tiếp tuyến của đường tròn đường kính DE.
Hình bạn tự vẽ nhé!
Gọi I là trung điểm của DE.
Từ I dựng IH vuông góc với AB tại H.
Ta có: Ax//By
=> Tứ giác ABED là hình thang.
và ID = IE (I là trung điểm của DE)
OA = OB (O là tâm của đường tròn đường kính AB)
=> OI là đường trung bình của hinh thang ABED
=> OI//AD
=> SAOI = SDOI
=> 1/2.OA.IH = 1/2.DI.OC
Mà OI = OC
=> IH = DI = IE
Mà IH vuông góc với AB (cách lấy điểm H)
=> AB là tiếp tuyens của đường tròn đường kính DE.
Cho nửa (O;R) đường kính AB. Trên nửa mặt phẳng bờ AB chứ nửa đường tròn từ A và B kẻ 2 tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn, kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D.
a)Chứng minh AB là tiếp tuyến đường tròn đường kính BC
b)Gọi giao điểm của CO với AM là I;OD cắt BM tại K
Chứng minh MO=IK
c)Chứng minh khi M chạy trên nửa đường tròn thì trung điểm J của MO chạy trên 1 đường cố định
CHO NỬA ĐƯỜNG TRÒN (O;R) ĐƯỜNG KÍNH AB. TỪ A VÀ B KẺ HAI TIẾP TUYẾN AX VÀ BY VỚI NỬA ĐƯỜNG TRÒN . QUA ĐIỂM M BẤT KÌ THUỘC NỬA ĐƯỜNG TRÒN KẺ TIẾP TUYẾN THỨ BA CẮT AX ,BY LẦN LƯỢT TẠI E VÀ F . NỐI AM CẮT OE TẠI P, NỐI BM CẮT OF TẠI Q. HẠ MH VUÔNG GÓC VỚI AB TẠI HA, CHỨNG MINH…
(ko cần vẽ hình)
Cho nửa đường tròn (O) đường kính AB. Kẻ các tiếp tuyến Ax, By của nửa đường tròn. Qua điểm M bất kỳ thuộc nửa đường tròn (M khác A và B) kẻ tiếp tuyến với nửa đường tròn cắt Ax, By thứ tự tại C và D. Chứng minh rằng:
1) góc COD = \(90^o\)
2) CD = AC + BD
3) Tích AC.BD không đổi khi M di chuyến trên nửa đường tròn
Ta có:
(do )
b)
Ta có: CM = AC, MD = BD (chứng minh trên)
Lại có: CD = CM + MD = AC + BD (đcpcm)
c)
Ta có: CM = AC, MD = BD (chứng minh trên)
Xét tam giác COD vuông tại O
Áp dụng hệ thức lượng trong tam giác vuông có:
(do MO = R)
Vì bán kính đường tròn không đổi khi M di chuyển trên nửa đường tròn nên không đổi do đó tích AC. BD không đổi khi M di chuyển trên nửa đường tròn.
(ko cần vẽ hình)Cho nửa đường tròn (O) đường kính AB. Kẻ các tiếp tuyến Ax, By của nửa đường tròn. Qua điểm M bất kỳ thuộc nửa đường tròn (M khác A và B) kẻ tiếp tuyến với nửa đường tròn cắt Ax, By thứ tự tại C và D. Chứng minh rằng:
1) góc COD = \(90^o\)
2) CD = AC + BD
3) Tích AC.BD không đổi khi M di chuyến trên nửa đường tròn
1: Xét (O) có
CA,CM là tiếp tuyến
=>CA=CM và OC là phân giác của góc MOA(1)
Xét (O) có
DM,DB là tiếp tuyến
=>DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc COM+góc DOM=1/2(góc MOA+góc MOB)
=>góc COD=1/2*góc AOB=90 độ
2: CD=CM+MD
mà CM=CA và MD=DB
nên CD=CA+DB
3: AC*BD=CM*MD
Xét ΔOCD vuông tại O có OM là đường cao
nên CM*MD=OM^2
=>AC*BD=R^2 không đổi
cho nửa đường tròn (O;R) đường kính AB. Lấy M thuộc nửa đường tròn đó sao cho AM<BM. Qua M kẻ d là đường tiếp tuyến của (O). Gọi C và D là hình chiếu của A và B trên d kẻ MH vuông góc AB
a) CMR A,C,M,H cùng thuộc 1 đường tròn
b) MB^2= BHxBA và BM là tiếp tuyến của đường tròn đg kính AM
c) CMR: H thuộc đg tròn đường kính CD
d) giả sử AM = R và d cắt AB ở K. tiếp tuyến với (O) tại A cắt d ở E. CMR
Cho nửa đường tròn tâm O đường kính AB, tiếp tuyến Ax. Qua C thuộc nửa đường tròn kẻ tiếp tuyến với nửa đường tròn cắt Ax ở M. Kẻ CH vuông AB cắt BM ở I. Chứng minh I là trung điểm CH
Cho nửa đường tròn O, bán kính R. Kẻ tiếp tuyến Ax, By của nửa (O) tại A và B (Ax,By và nửa đường tròn cùng thuộc một bờ mp AB) Qua M thuộc nửa đường tròn (M # A,B). Kẻ tiếp tuyến với nửa đường tròn cắt Ax, By tại C,D
CMR:
a. tam giác COD vuông tại O
b. AC.BD=R.R
c. Kẻ MH vuông góc AB (H thuộc AB) CM: BC đi qua trung điểm của MH.
Cho nửa đường tròn (O;R) đường kính AB. Kẻ 2 tiếp tuyế Ax, By với nửa đường tròn. Lấy 1 điểm C thuộc nửa đường tròn, qua C kẻ tiếp tuyến thứ 3 cắt 2 tiếp tuyến Ax, By lần lượt tại D và E.
a) C/m: AD + BE = DE
b) C/m: Góc DOE vuông và AD.BE = R bình phương