Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trọng Tấn
Xem chi tiết
Pinterest Web
22 tháng 12 2018 lúc 20:20

Dễ chứng minh m,n đều là số lẻ (sử dụng phản chứng vs n,m đều chẵn, 1 trong 2 số chẵn). Vậy ta có hđt mở rộng:

\(3^m+5^m+3^n+5^n=\left(3+5\right)\left(3^{m-1}-3^{m-2}.5+...\right)+\left(3+5\right)\left(3^{n-1}-3^{n-2}.5+...\right)\)

\(=8A+8B\)

=> \(3^n+5^m=8A+8B-3^m-5^n\)

=> \(3^n+5^m\)chia hết cho 8. d0pcm

Lee Min Ho club
Xem chi tiết
Miyano Ai
Xem chi tiết
Tran Thi Minh Nguyet
Xem chi tiết
Hoàng C5
12 tháng 12 2016 lúc 10:37

Vì 3^m+5^n chia hết cho 8, 8^n+8^m chia hết cho 8

=>(8^m+8^n) - (3^m+5^n) chia hết cho 8

=>3^n+5^m chia hết cho 8

CƯỜNG MAI ĐỨC
5 tháng 11 2021 lúc 20:48

Giả sử m,n đều là số chẵn .

Đặt n = 2a , m = 2b ( a,b thuộc Z+ ; a,b 》1 )

=> 3^m = 3^2b = 9^b đd 1 ( mod 8 ) ; 5^n = 5^2a = 25^a đd 1 ( mod 8 )

=> 3^m + 5^n đd 2 ( mod 8 ) ( trái với giả thiết )

=> Điều giả sử sai

=> m,n không cùng là số chẵn 

Tương tự : Nếu trong 2 số m,n có 1 số chẵn , 1 số lẻ không thỏa mãn giả thiết 

=> Cả m,n đều là số lẻ 

Xét tổng 3^m + 5^n + 3^n + 5^m = ( 3^m + 5^m ) + ( 3^n + 5^n )

= ( 3 + 5 ).( 3^m-1 - 3^m-2.5 + ... + 5^m-1 ) + ( 3 + 5 ).( 3^n-1 - ... + 5^n-1 ) ( Vì m,n đều là số lẻ )

= 8.M + 8.N chia hết cho 8

Mà 3^m + 5^n chia hết cho 8 ( giả thiết )

=> 3^n + 5^m chia hết cho 8 ( đpcm )

Vậy 3^n + 5^m chia hết cho 8 .

Khách vãng lai đã xóa
Trần Minh Hưng
Xem chi tiết
Akai Haruma
16 tháng 12 2016 lúc 23:08

Lời giải:

Ta có $3^m+5^n\equiv 3^m+1\equiv 0\pmod 4$ nên $3^m\equiv (-1)^m\equiv -1\pmod 4$ nên $m$ lẻ

Đặt $m=2k+1$ ( $k\in\mathbb{N}$) thì $3^m=3^{2k+1}\equiv 3\pmod 8$

$\Rightarrow 5^n\equiv 5\pmod 8$. Xét tính chẵn, lẻ ( đặt $n=2t,2t+1$) suy ra $n$ lẻ

Do đó $\Rightarrow 3^n+5^m\equiv (-5)^n+(-3)^m=-(5^n+3^m)\equiv 0\pmod 8$

Ta có đpcm

Jin Air
Xem chi tiết
Trần Quang Đài
10 tháng 3 2016 lúc 8:45

không biết ai làm dc bài này chắc mình hâm mộ lắm

Hopeless
10 tháng 3 2016 lúc 9:38

\(3^m+5^n=8.k\) chia hết cho 8.

\(\left(3^m-3^n\right)+\left(5^n+5k\right)=0\)

\(3\left(3^{m-1}-k\right)+5\left(5^{n-1}-k\right)=0\)

\(3^{m-1}-k=0\) \(\Rightarrow3^{m-1}=k\)

\(5^{n-1}-k=0\Rightarrow5^{n-1}=k\)

Tới đây bí òi

Gia Lai
10 tháng 3 2016 lúc 10:02

cậu kb với mk đi

Lãnh Hạ Thiên Băng
Xem chi tiết
alibaba nguyễn
21 tháng 11 2016 lúc 10:43

Giả sử n và m là số chẵn ta có: \(\hept{\begin{cases}n=2k\\m=2p\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}3^m=3^{2k}=9^k\\5^n=5^{2p}=25^p\end{cases}}\)

Ta có 9 chia cho 8 dư 1 nên 9k chia 8 dư 1

25 chia 8 dư 1 nên 25p chia 8 dư 1

\(\Rightarrow3^m+5^n\)chia 8 dư 2. Trai giả thuyết

Tương tự với n lẻ m chẵn và n chẵn m lẻ ta đều không thỏa đề bài. Từ đó ta có được là n,m phải là 2 số lẻ

Ta có: 

\(3^m+5^n+3^n+5^m=\left(3^m+5^m\right)+\left(3^n+5^n\right)\)

\(=\left(3+5\right)\left(3^{m-1}-3^{m-2}.5+...\right)+\left(3+5\right)\left(3^{n-1}-3^{n-2}.5+...\right)=8A+8B\)

\(\Rightarrow3^n+5^m=8A+8B-3^m-5^n\)

Ta thấy rằng \(3^m+5^n;8A+8B\)đều chia hết cho 8 nên \(3^n+5^m\)chia hết cho 8

nguyễn thu hải
21 tháng 11 2016 lúc 21:28

chia hết cho 8 nha bạn !

Đào Trọng Nghĩa
21 tháng 11 2016 lúc 21:40

chia hết cho 8

Jin Air
Xem chi tiết
Barcelona
Xem chi tiết