TÌm x:
\(7x^3+12x^2-4x=0\)
tìm x
x ( x - 3 ) + 5x = x2 - 8
3 ( x + 4 ) - x2 - 4x = 0
7x3 + 12x2 - 4x = 0
a) x(x - 3) + 5x = x2 - 8
=> x2 - 3x + 5x - x2 + 8 = 0
=> 2x + 8 = 0
=> 2x = -8
=> x = -4
b) 3(x + 4) - x2 - 4x = 0
=> 3(x + 4) - x(x + 4) = 0
=> (3 - x)(x + 4) = 0
=> \(\orbr{\begin{cases}3-x=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}\)
Vậy \(x\in\left\{3;-4\right\}\)là giá trị cần tìm
c) 7x3 + 12x2 - 4x = 0
=> x(7x2 + 12x - 4) = 0
=> x(7x2 + 14x - 2x - 4) = 0
=> x[7x(x + 2) - 2(x + 2)] = 0
=> x(x + 2)(7x - 2) = 0
=> x = 0 hoặc x + 2 = 0 hoặc 7x - 2 = 0
=> x = 0 hoặc x = -2 hoặc x = 2/7
Vậy \(x\in\left\{0;-2;\frac{2}{7}\right\}\)là giá trị cần tìm
x( x - 3 ) + 5x = x2 - 8
⇔ x2 - 3x + 5x - x2 + 8 = 0
⇔ 2x + 8 = 0
⇔ 2x = -8
⇔ x = -4
3( x + 4 ) - x2 - 4x = 0
⇔ 3( x + 4 ) - x( x + 4 ) = 0
⇔ ( x + 4 )( 3 - x ) = 0
⇔ x = -4 hoặc x = 3
7x3 + 12x2 - 4x = 0
⇔ x( 7x2 + 12x - 4 ) = 0
⇔ x( 7x2 + 14x2 - 2x - 4 ) = 0
⇔ x[ 7x( x + 2 ) - 2( x + 2 ) ] = 0
⇔ x( x + 2 )( 7x - 2 ) = 0
⇔ x = 0 hoặc x = -2 hoặc x= 2/7
tìm x,biết:
a 2x(x-7)+5x-35
b x^3-2x^2+x-3=0
c 4x^2+12x+9=0
d x(x-3)-7x+21=0
\(d,x\left(x-3\right)-7x+21=0\)
\(\Leftrightarrow x\left(x-3\right)-7\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=7\end{cases}}}\)
\(a,2x\left(x-7\right)+5x-35=0\)
\(\Leftrightarrow2x\left(x-7\right)+5\left(x-7\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\2x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-\frac{5}{2}\end{cases}}}\)
\(c,4x^2+12x+9=0\)
\(\Leftrightarrow4x^2+6x+6x+9=0\)
\(\Leftrightarrow2x\left(2x+3\right)+3\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(2x+3\right)=0\)
\(\Leftrightarrow2x+3=0\)
\(\Leftrightarrow x=-\frac{3}{2}\)
a) 2x(x-7)+5x-35=0
<=> 2x(x-7)+5(x-7)=0
<=>(2x+5)(x-7)=0
<=> (2x+5)=0 <=> x=-5/2
hoặc <=> x-7=0 <=> x=7
Tìm x , biết :
a. x(x - 2) - 7x + 14 = 0
b, x2(x - 3) + 12 - 4x = 0
c. x2 + 12x - 13 = 0
d. 4x2 - 4x = 8
e. x2 - 6x = 1
a) \(x\left(x-2\right)-7x+14=0\)
\(\Leftrightarrow x\left(x-2\right)-7\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=7\end{cases}}\)
b) \(x^2\left(x-3\right)+12-4x=0\)
\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x^2=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\pm2\end{cases}}\)
c) \(x^2+12x-13=0\)
\(\Leftrightarrow\left(x^2-x\right)+\left(13x-13\right)=0\)
\(\Leftrightarrow x\left(x-1\right)+13\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+13\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-13\end{cases}}\)
d) \(4x^2-4x=8\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
e) \(x^2-6x=1\)
\(\Leftrightarrow\left(x-3\right)^2=10\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=\sqrt{10}\\x-3=-\sqrt{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=3+\sqrt{10}\\x=3-\sqrt{10}\end{cases}}\)
a) x( x - 2 ) - 7x + 14 = 0
<=> x( x - 2 ) - 7( x - 2 ) = 0
<=> ( x - 2 )( x - 7 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=7\end{cases}}\)
b) x2( x - 3 ) + 12 - 4x = 0
<=> x2( x - 3 ) - 4( x - 3 ) = 0
<=> ( x - 3 )( x2 - 4 ) = 0
<=> \(\orbr{\begin{cases}x-3=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\pm2\end{cases}}\)
c) x2 + 12x - 13 = 0
<=> x2 - x + 13x - 13 = 0
<=> x( x - 1 ) + 13( x - 1 ) = 0
<=> ( x - 1 )( x + 13 ) = 0
<=> \(\orbr{\begin{cases}x-1=0\\x+13=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-13\end{cases}}\)
d) 4x2 - 4x = 8
<=> 4( x2 - x ) = 8
<=> x2 - x = 2
<=> x2 - x - 2 = 0
<=> x2 + x - 2x - 2 = 0
<=> x( x + 1 ) - 2( x + 1 ) = 0
<=> ( x + 1 )( x - 2 ) = 0
<=> \(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
e) x2 - 6x = 1
<=> x2 - 6x + 9 = 1 + 9
<=> ( x - 3 )2 = 10
<=> ( x - 3 )2 = ( ±√10 )2
<=> \(\orbr{\begin{cases}x-3=\sqrt{10}\\x-3=-\sqrt{10}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3+\sqrt{10}\\x=3-\sqrt{10}\end{cases}}\)
Tìm x , biết :
a. x(x - 2) - 7x + 14 = 0
b, x2(x - 3) + 12 - 4x = 0
c. x2 + 12x - 13 = 0
d. 4x2 - 4x = 8
e. x2 - 6x = 1
Tìm x , biết :
a. x(x - 2) - 7x + 14 = 0
b, x2(x - 3) + 12 - 4x = 0
c. x2 + 12x - 13 = 0
d. 4x2 - 4x = 8
e. x2 - 6x = 1
Giai phương trình sau:
a,\(x^2+3x-10=0\) b,\(3x^2-7x+1=0\)
c,\(3x^2-7x+8=0\) d,\(4x^2-12x+9=0\)
e,\(3x^2+7x+2=0\) h,\(x^2-4x+1=0\)
i,\(2x^2-6x+1=0\) j, \(3x^2+4x-4=0\)
a) Ta có: \(x^2+3x-10=0\)
\(\Leftrightarrow x^2+5x-2x-10=0\)
\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Vậy: S={-5;2}
b) Ta có: \(3x^2-7x+1=0\)
\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)=0\)
mà 3>0
nên \(x^2-\dfrac{7}{3}x+\dfrac{1}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}-\dfrac{37}{36}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=\dfrac{37}{36}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{7}{6}=\dfrac{\sqrt{37}}{6}\\x-\dfrac{7}{6}=-\dfrac{\sqrt{37}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{37}+7}{6}\\x=\dfrac{-\sqrt{37}+7}{6}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{\sqrt{37}+7}{6};\dfrac{-\sqrt{37}+7}{6}\right\}\)
c) Ta có: \(3x^2-7x+8=0\)
\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{8}{3}\right)=0\)
mà 3>0
nên \(x^2-\dfrac{7}{3}x+\dfrac{8}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}+\dfrac{47}{36}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=-\dfrac{47}{36}\)(vô lý)
Vậy: \(x\in\varnothing\)
Tìm x biết
a)(x+3)^2(x-2)^2=2x b)7x(x-2)=(x-2) c)8x^3-12x^2+6x-1=0
d)4x^2-9-x(2x-3)=0 e)x^3+5x^2+9x=-45 f)x^3-6x^2-x+30=0
d) \(4x^2-9-x\left(2x-3\right)=0\)
\(\Leftrightarrow4x^2-9-2x^2+3x=0\)
\(\Leftrightarrow2x^2+3x-9=0\)
\(\Delta=3^2-4.2.\left(-9\right)=9+72=81\)
Vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-3+\sqrt{81}}{4}=\frac{-3}{2}\);\(x_1=\frac{-3-\sqrt{81}}{4}=-3\)
e) \(x^3+5x^2+9x=-45\)
\(\Leftrightarrow x^3+5x^2+9x+45=0\)
\(\Leftrightarrow x^2\left(x+5\right)+9\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^2+9\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+9=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm3i\\x=-5\end{cases}}\)
f) \(x^3-6x^2-x+30=0\)
\(\Leftrightarrow\left(x^3-x^2-6x\right)-\left(5x^2-5x-30\right)=0\)
\(\Leftrightarrow x\left(x^2-x-6\right)-5\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2-2x+3x-6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left[x\left(x-2\right)+3\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow x\in\left\{5;-3;2\right\}\)
Tìm x , biết :
a. 3x3 - 12x = 0
b. x2 (x - 3) + 12 - 4x = 0
c. (3x - 1)2 - (2x - 3)2 = 0
d. x2 - 4x - 21 = 0
e. 3x2 - 7x - 10 = 0
a) \(3x^3-12x=0\)
=> \(3x\left(x^2-4\right)=0\)
=> \(\orbr{\begin{cases}3x=0\\x^2-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
b) \(x^2\left(x-3\right)+12-4x=0\)
=> \(x^2\left(x-3\right)+\left(-4x+12\right)=0\)
=> \(x^2\left(x-3\right)-4x+12=0\)
=> \(x^2\left(x-3\right)-4\left(x-3\right)=0\)
=> \(\left(x-3\right)\left(x^2-4\right)=0\Rightarrow\orbr{\begin{cases}x=3\\x=\pm2\end{cases}}\)
c) \(\left(3x-1\right)^2-\left(2x-3\right)^2=0\)
=> \(\left[3x-1-\left(2x-3\right)\right]\left(3x-1+2x-3\right)=0\)
=> \(\left(3x-1-2x+3\right)\left(3x-1+2x-3\right)=0\)
=> \(\left(x+2\right)\left(5x-4\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{4}{5}\end{cases}}\)
d) \(x^2-4x-21=0\)
=> \(x^2+3x-7x-21=0\)
=> \(x\left(x+3\right)-7\left(x+3\right)=0\)
=> (x + 3)(x - 7) = 0 => x = -3 hoặc x = 7
e) 3x2 - 7x - 10 = 0
=> 3x2 + 3x - 10x - 10 = 0
=> 3x(x + 1) - 10(x + 1) = 0
=> (x + 1)(3x - 10) = 0
=> x = -1 hoặc x = 10/3
a) \(3x^3-12x=0\)
\(\Leftrightarrow3x\left(x^2-4\right)=0\)
\(\Leftrightarrow3x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow x\in\left\{-2;0;2\right\}\)
b) \(x^2\left(x-3\right)+12-4x=0\)
\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow x\in\left\{-2;2;3\right\}\)
c) \(\left(3x-1\right)^2-\left(2x-3\right)^2=0\)
\(\Leftrightarrow\left(x+2\right)\left(5x-4\right)=0\)
\(\Leftrightarrow x\in\left\{-2;\frac{4}{5}\right\}\)
d) \(x^2-4x-21=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=-3\end{cases}}\)
e) \(3x^2-7x-10=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{10}{3}\end{cases}}\)
Tìm x , biết :
a. 3x3 - 12x = 0
b. x2 (x - 3) + 12 - 4x = 0
c. (3x - 1)2 - (2x - 3)2 = 0
d. x2 - 4x - 21 = 0
e. 3x2 - 7x - 10 = 0
Ta có : 3x3 - 12x = 0
=> 3x(x2 - 4) = 0
=> x(x - 2)(x + 2) = 0
=> \(x\in\left\{0;2;-2\right\}\)
b) x2(x - 3) + 12 - 4x = 0
=> x2(x - 3) - 4(x - 3) = 0
=> (x2 - 4)(x - 3) = 0
=> \(\orbr{\begin{cases}x^2-4=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=4\\x=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=\pm2\\x=3\end{cases}}\)
Vậy \(x\in\left\{-2;2;3\right\}\)
c) (3x - 1)2 - (2x - 3)2 = 0
=> (3x - 1 - 2x + 3)(3x - 1 + 2x - 3) = 0
=> (x + 2)(5x - 4) = 0
=> \(\orbr{\begin{cases}x+2=0\\5x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=0,8\end{cases}}\)
Vậy \(x\in\left\{-2;0,8\right\}\)
d) x2 - 4x - 21 = 0
=> x2 - 7x + 3x - 21 = 0
=> x(x - 7) + 3(x - 7) = 0
=> (x + 3)(x - 7) = 0
=> \(\orbr{\begin{cases}x+3=0\\x-7=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=7\end{cases}}\)
Vậy \(x\in\left\{-3;7\right\}\)
e) 3x2 - 7x - 10 = 0
=> 3x2 + 3x - 10x - 10 = 0
=> 3x(x + 1) - 10(x + 1) = 0
=> (3x - 10)(x + 1) = 0
=> \(\orbr{\begin{cases}3x-10=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{10}{3}\\x=-1\end{cases}}\)
Vậy \(x\in\left\{\frac{10}{3};-1\right\}\)
Tìm x
a) 2x(3+4x)-8x(x-3)=-2
b) 7(x^2-3)-7x(x+4)=30
c) 4x(3-3x)+12x(x-1)=0
d) 3x(x-2)-(3x-4)x=-2
Bài nhân đơn thức với đa thức ạ