Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuấn Huỳnh Minh
Xem chi tiết
Cường Mai
19 tháng 7 2021 lúc 14:46

Do x;y có vai trò tương đương nhau nên ko giảm tính tổng quát của bài toán, ta giả sử:x>= y
Suy ra: x^2<x^2+y=<x^2+x<(x+1)^2 mà x;y nguyên dương => x^2+y không phải là scp.
        Vậy không tồn tại 2 số x;y sao cho x^2+y; y^2+x

Khách vãng lai đã xóa
s2 Lắc Lư  s2
Xem chi tiết
Thơ Anh
Xem chi tiết
Trần Minh Hoàng
13 tháng 3 2021 lúc 22:59

Giả sử tồn tại x, y, z, t thỏa mãn.

Ta chứng minh bổ đề: Cho \(a,b\in\mathbb{Z}\). Khi đó \(a^2+b^2\vdots 3\Leftrightarrow a,b\vdots 3\).

Thật vậy, ta thấy nếu \(a,b\vdots 3\Rightarrow a^2+b^2\vdots 3\).

Nếu \(a^2+b^2\vdots 3\): Do \(a^2,b^2\equiv0;1\left(mod3\right)\) nên ta phải có \(a^2,b^2\equiv0\left(mod3\right)\Rightarrow a,b⋮3\).

Bổ đề dc cm.

Trở lại bài toán: Ta có 2019 chia hết cho 3 nên \(x^2+y^2⋮3\Rightarrow x,y⋮3\Rightarrow x^2+y^2⋮9\).

Mà 2019 không chia hết cho 9 nên \(z^2+t^2⋮3\Leftrightarrow z,t⋮3\).

Đặt x = 3x', y = 3y', z = 3z', t = 3t'.

Ta có \(2019=\dfrac{x^2+y^2}{z^2+t^2}=\dfrac{x'^2+y'^2}{z'^2+t'^2}\).

Cmtt, ta có \(x',y',z',t'⋮3\).

Lặp lại nhiều lần như vậy, ta có \(x,y,z,t⋮3^k\forall k\in N\).

Do đó x = y = z = t = 0 (vô lí).

Vậy không tồn tại...

四种草药 - TFBoys
Xem chi tiết
Karry Joy
20 tháng 3 2019 lúc 20:46

Xét tổng (x-2y) + (4y-5z)+ (z+3x)+(-2x+2y-4z)

              =x-2y + 4y-5z +z+3x - 2x+2y-4z

             = (x+3x-2x)+(4y-2y+2y)+(z-5z-4z)

            = 2x+4y-8z

=>tổng trên là số chẵn 

=> /x-2y/+ /4y-5z/+/z+3x/+(-2x+2y-4z) phải là chẵn 

Mà 2017 lẻ nên ko tồn tại...  

Postgass D Ace
Xem chi tiết
•Oωε_
20 tháng 12 2019 lúc 20:54

+, Nếu x = 0 hoặc x = 1  ; y = 0 hoặc y = 1  thay vào 2016x2017 + 2017y2018 = 2019 thì 2016.02017 + 2017.02018 = 4033 ( Loại )

+, Nếu x,y \(\ge\)2 thay vào 2016 . 22017 + 2017 . y 2018 = 2019 ( Vô lí , loại )

Do đó không tồn tại 2 số nguyên x;y thỏa mãn điều kiện bài toán 

Vậy không tồn tại ......

Hok tốt

Khách vãng lai đã xóa
Postgass D Ace
21 tháng 12 2019 lúc 6:19

mình xin nhắc nhẹ bạn là nguyên chứ ko phải nguyên dương nên x^2017 có thể âm nhé

Khách vãng lai đã xóa
•Oωε_
21 tháng 12 2019 lúc 20:28

Nếu là số nguyên thì cậu cứ thử như vậy thì cũng có trường hợp nào thỏa mãn đề bài .

Hok tốt 

Khách vãng lai đã xóa
Đoàn Thị Hương Giang
Xem chi tiết
Nguyễn Quang Minh
Xem chi tiết
Nguyễn Quang Minh
14 tháng 1 2016 lúc 21:29

bạn giải thích dùm mình được ko.

Mình cần gấp.

 

 

Kudo Shinnichi
Xem chi tiết
Nguyễn Huy Bách
Xem chi tiết

Giả sử tồn tại các số nguyên dương x,y mà :

(x+y)(x-y)=2022 (1)

Không thể xảy ra trường hợp trong 2 số x và y có 1 số le và 1 số chẵn vì nếu xảy ra thì x+y va x-y đều là số lẻ nên tích (x+y)(x-y) là số lẻ trái với (1)

Vậy x,y phải cùng chẵn hoặc cùng lẻ . Khi đó tích x+y và x-y đều là số chẵn nên tích  (x+y)(x-y)  chia hết cho 4 mà 2022 lại không chia hết cho 4                 suy ra không tồn tại 2 số nguyên dương x và y

Khách vãng lai đã xóa