1-2+2^2-2^3+.......+2^2018-2^2019
Thu gọn tổng sau
Thu gọn các tổng sau
E= 1 + 22 + 24 + ...+ 22018
F=3 + 32 + 33 +...+ 3100
\(4E=2^2.E=2^2+2^4+2^6+...+2^{2020}\)
\(3E=4E-E=2^{2020}-1\Rightarrow E=\frac{2^{2020}-1}{3}\)
\(3F=3^2+3^3+3^4+...+3^{101}\)
\(2F=3F-F=3^{101}-3\Rightarrow F=\frac{3^{101}-3}{2}\)
thu gọn và tìm chữ số tận cùng của tổng ?
S = 1 +2 + 2 ^2 +2^3+...+ 2 ^ 2018
Ta có \(S=1+2+2^2+2^3+....+2^{2018}\)
Suy ra \(2S=2+2^2+2^3+2^4+....+2^{2019}\)
Nên \(2S-S=2^{2019}-1\Rightarrow S=2^{2019}-1\)
Ta có \(2^{2019}-1=2^{2016}.2^3-1=\left(2^4\right)^{504}.8-1=16^{504}.8-1\)
Vì 16 tận cùng là 6 nên \(16^{504}\)tận cùng là 6 nên \(16^{504}.8\)tận cùng là 8
Suy ra \(16^{504}.8-1\)tận cùng là 7 hay S tận cùng là 7
Vậy S =\(2^{2019}-1\)và S tận cùng là 7
thu gọn tổng 1/16 +1/32 +1/64 +...+1/2^2017 +1/2^2018
Bài 3: Thu gọn các biểu thức sau:
a) A=1+3 + 32+33+...+32018
b) B=1+1/2+(1/2)2+(1/2)3+...+(1/2)2018
c) C=1-3+32-33+34-35+...-32017+32018
a)bạn nhân lũy thừa 3 lên là tính đc, bài c thì tương tự
còn bài b mk ko bt
mk làm mẫu 1 bài nha
a) 3A=3.(1+3+3^2+.....+3^2018)
3A=3+3^2+.....+3^2019
3A-A=(3+3^2+.....+3^2019)-(1+3+3^2+.....+3^2018)
2A=3^2019-1
A=3^2019-1:2
tính tổng S=2018+2018/1+2+2018/1+2+3+...+2018/1+2+3+..+2017
9219321938921839289382983928392839238929832
Rứt gọn biểu thức:
C=(20182019+20182018+...+20182+2018)2017+1
À=3/12.22+5/22.32+7/32.42+...+(n+1)2-12/n2(n+1)2 với nEN*
\(C=\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)2017+1\)
\(=\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)2018-\left(2018^{2019}+2018^{2018}+...+2018\right)-1\)
\(=\left(2018^{2020}+2018^{2019}+...+2018^3+2018^2\right)-\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)+1\)\(=2018^{2020}-2018+1\)
\(=2018^{2020}-2017\)
Bài 1: Rút gọn biểu thức sau:
a. \(A=\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{1}{\sqrt{4}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2019}+\sqrt{2018}}\)
b. \(B=\dfrac{1}{\sqrt{2}+\sqrt{1}}+\dfrac{1}{2\sqrt{3}+3\sqrt{2}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{2018\sqrt{2017}+2017\sqrt{2018}}\)
a/ Ta có:
\(\dfrac{1}{\sqrt{n+1}+\sqrt{n}}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\sqrt{n+1}-\sqrt{n}\)
\(\Rightarrow A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2019}-\sqrt{2018}=\sqrt{2019}-1\)
a.\(A=\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{1}{\sqrt{4}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2019}+\sqrt{2018}}=\dfrac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\dfrac{\sqrt{2019}-\sqrt{2018}}{\left(\sqrt{2019}+\sqrt{2018}\right)\left(\sqrt{2019}-\sqrt{2018}\right)}=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2019}-\sqrt{2018}=\sqrt{2019}-1\)
b/ \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
\(\Rightarrow B=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{2017}}-\dfrac{1}{\sqrt{2018}}=1-\dfrac{1}{\sqrt{2018}}\)
Rút gọn : 1 x 1! + 2 x 2! + 3 x 3! + ... + 2018 x 2018!
Làm nhanh giúp mình nha
Tính các tổng sau dưới dạng lũy thừa
B=2+2^2+2^3+....+2^2016
C=1+3+3^2+.....+3^2017
D=1+4+4^3+.....+4^2018
E=5+5^2+5^3+......+5^2018
Làm nhanh hộ mình mình đang vội ai đúng mình like cho
\(B=2+2^2+2^3+...+2^{2016}\)
\(2B=2^2+2^3+...+2^{2017}\)
\(B=2^{2017}-2\)
các ý khác tương tự
ý C nhân vs 3
D 4
E 5
3C = 3(1+3+3^2+.......+3^2017)
= 3+3^2+3^3+......+3^2018
3C - C = (3+3^2+3^3+......+3^2018) - (1+3+3^2+......+3^2017)
= 3^2018 - 1
=> C = (3^2018 - 1) : 2
còn lại tự làm nhé