chung minh khong ton tai 2 so x^2+2y^2-2xy+x-2y+1=0
cho ba so x,y,z khac 0 thoa man x+y+z=2015 va 1/x+1/y+1/z=1/2015 chung minh ba so x,y,z khong ton tai 2 so doi nhau
chung minh khong ton tai 3 so nguyen x y z sao cho x^2 - 4yz = 23
chung minh rang:neu mot so tu nhien khong chia het cho 2 va5 thi ton tai boi cua no co dang 1111...1[so tu nhien gom toan chu so 1]
chung minh rang khong ton tai 3 so huu ti :x,y,z
xy=13/15
yz=1/3
zx=3/13
\(xy=\frac{13}{15}\)
\(yz=\frac{1}{3}\)
\(zx=\frac{3}{13}\)
\(\Rightarrow\left(xyz\right)^2=\frac{13}{15}.\frac{1}{3}.\frac{3}{13}=\frac{1}{15}=\frac{1^2}{\left(\sqrt{15}\right)^2}\)
Vì x ; y ; z là các số hữu tỉ nên ( xyz)2 là số hữu tỉ, ta chỉ cần chứng minh \(\sqrt{15}\) không phải số hữu tỉ mà là số vô tỉ.
Giả sử \(\sqrt{15}\) là số hữu tỉ thì coi \(\sqrt{15}=\frac{m}{n}\)( \(\frac{m}{n}\) phải là phân số tối giản)
\(\Rightarrow15=\frac{m^2}{n^2}\)
\(\Rightarrow15n^2=m^2\)
\(\Rightarrow m^2\)chia hết cho 15 = 3 x 5; 3 và 5 là các số nguyên tố nên \(m\) chia hết cho 15.
Đặt \(m=15k\left(k\in Z;k\ne0\right)\)
\(\Rightarrow m^2=\left(15k\right)^2=225k^2\)
\(\Rightarrow15n^2=m^2=225k^2\)
\(\Rightarrow n^2=\frac{225k^2}{15}=15k^2\)
\(\Rightarrow n^2\)chia hết cho 15
\(\Rightarrow n\)chia hết cho 15
Xét phân số \(\frac{m}{n}\)có m và n đều chia hết cho 15 nên không phải phân số tối giản, trái với đề bài. Do đó \(\sqrt{15}\) không phải số hữu tỉ.
Do đó không tồn tại 3 số hữu tỉ x ; y ; z thỏa mãn đề bài.
tim da thuc;A-(x^2y-2xy^2+xy+1)=x^2y+xy^2-xy-1 b,tinh A tai x=1,y=(-1)
tìm x, y biết :
a, x^2 - 4x + y^2 +2y +5 = 0
b, x^2 + 2y^2 + 2xy -2y +1 =0
c, x^2 + 2y^2 +2xy = 2y - 2
GIÚP MÌNH NHA
a/ (x^2-4x+4)+(y^2+2y+1)=0
<=> (x-2x)^2+(y+1)^2 = 0 Vậy x=2 và y = -1
b/ (x^2+2xy+y^2) + ( y^2-2y+1) = 0
<=> (x+y)^2 + (y-1)^2 = 0 Vậy x=y=1
a) { x^2 - 4x +4 } +{y^2+2x+1}=0
<=>{ x - 2x}^2+{y+1}^2=0 Vậy x =2 vầy =-1
b) { x^2 +2xy +y^2} +{y^2 - 2y +1=0}
<=> {x+y}^2+{ y - 1 }^2 =0 Vậy x=y=1.
NHA BẠN!
cho (x+2y)(x^2-2xy+4y^2)=0 vs (x-2y)(x^2+2xy+4y^2)=16 tim x va y
giai cach lam jup minh nha
chung minh rang khong ton tai x,y la so nguyen thoa man bieu thuc:
\(2012x^{2015}+2013y^{2018}=2015\)
TH1:Nếu x>0
nếu y\(\ne\)0, ta có: \(VT>2012.1^{2015}+2013.1^{2018}>2015\)
nếu y=0, ta có : nếu x=1, VT=2012<2015
nếu x>1, \(VT>2012.2^{2015}+2013.0^{2018}>2015\)
TH2: nếu x=0, pt vô nghiệm
TH3: nếu x<0, ta có: \(2013y^{2018}+2012x^{2015}=2012\left(y^{2018}-x^{2015}\right)+y^{2018}\)
ta thấy x<0 nên VT>2012.(1+1)+1>2015
Vậy pt trên không có nghiệm nguyên
x2+2y2+2xy-2y+1=0
x2+2y2+2xy-2x+2=0 giúp nha
Mỗi dòng là một phương trình thì ta giải như sau :
\(x^2+2y^2+2xy-2y+1=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)
Vì \(\left(x+y\right)^2\ge0,\left(y-1\right)^2\ge0\) nên pt trên tương đương với :
\(\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=-1\\y=1\end{cases}\)
Vậy (x;y) = (-1;1)
Câu sau chị Bảo Ngọc quên làm thì mình làm nhá:
\(x^2+2y^2+2xy-2x+2=0\Rightarrow2x^2+4y^2+4xy-4x+4=0\)
\(\Rightarrow\left(x^2+4xy+4y^2\right)+\left(x^2-4x+4\right)=0\Rightarrow\left(x+2y\right)^2+\left(x-2\right)^2=0\)
Do \(\left(x+2y\right)^2\ge0;\left(x-2\right)^2\ge0\)
Vậy để đẳng thức xảy ra \(\Rightarrow\begin{cases}x+2y=0\\x-2=0\end{cases}\)\(\Rightarrow\begin{cases}x=2\\2y=-2\end{cases}\)\(\Rightarrow\begin{cases}x=2\\y=-1\end{cases}\)
Vậy \(\left(x;y\right)=\left(2;-1\right)\)
@phynit: Đây là 2 bài khác nhau nên vẫn được tick chứ ạ?