Min B=3x^2+9x-2
Tìm Min
B= 9x- 3x2
\(B=9x-3x^2\)
\(=-3\left(x^2-3x\right)\)
\(=-3\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)
\(=-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\)
Vì \(-3\left(x-\frac{3}{2}\right)^2\ge0;\forall x\)
\(\Rightarrow-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\ge0+\frac{27}{4};\forall x\)
V đang làm bài thì lỡ tay nhấn gửi làm tiếp nhé
Hay\(B\ge\frac{27}{4};\forall x\)
Dấu"="xảy ra \(\Leftrightarrow\left(x-\frac{3}{2}\right)^2=0\)
\(\Leftrightarrow x=\frac{3}{2}\)
Vậy \(B_{min}=\frac{27}{4}\Leftrightarrow x=\frac{3}{2}\)
Tìm max chứ
\(B=9x-3x^2=-3\left(x^2-3x\right)\)
\(=-3\left(x^2-3x+\frac{9}{4}-\frac{9}{4}\right)\)
\(=-3\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]\)
\(=-3\left[\left(x-\frac{3}{2}\right)^2\right]+\frac{27}{4}\le\frac{27}{4}\)
Bài 1:
a) Max A = (3x^2 + 9x +3) / (x^2 +x +1)
b) Min B = ( 7x^2 +21) / (x^2 + x +2)
\(A=\frac{3\left(x^2+x+1\right)+6x}{x^2+x+1}=3+\frac{6x}{x^2+x+1};\left(x-1\right)^2\ge0< =>x^2+x+1\ge3x;\)
=> \(A\le3+\frac{6x}{3x}=5\). Max A =5 khi x=1
\(B=\frac{7\left(x^2+x+2\right)+7-7x}{x^2+x+2}=7-\frac{7\left(x-1\right)}{x^2+x+2};\)\(\left(x-3\right)^2\ge0< =>x^2+x+2\ge7\left(x-1\right)\)
=> \(B\ge7-\frac{7\left(x-1\right)}{7\left(x-1\right)}=6\)MinB = 6 khi x =3
Tìm (Min) của biểu thức
P=9x^2-2x+3
Q=3x^2 -3x +1
Tìm Min hoặc Max
a)2x^2+10x-1
b) 5x - x^2
c) 2x^2-8x-10
d)9x-3x^2
Tìm min: a, A=9x^2 - 6x +5 b, B= 2x^2 + 2xy + y^2 -2x +2y+2
Tìm max: a, M= -2x^2 +3x +1 b, N =-x^2 + 2xy - 4y^2 + 2x+ 10y +5
Tìm Min (GTNN) (DẠNG TOÁN ÁP DỤNG HÀNG ĐẲNG THỨC ĐỂ TÌM GTLN,GTNN)
A= x mũ 2 - 6x + 10
B= 4x mũ 2 - 4x + 25
C= 3x mũ 2 + 9x + 12
\(A=x^2-6x+10=\left(x-3\right)^2+1\ge1\)
\(\Rightarrow A_{min}=1\Leftrightarrow x=3\)
\(B=4x^2-4x+25=\left(2x-1\right)^2+24\ge24\)
\(\Rightarrow B_{min}=24\Leftrightarrow x=\frac{1}{2}\)
\(C=3x^2+9x+12=3\left(x+\frac{3}{2}\right)^2+\frac{21}{4}\ge\frac{21}{4}\)
\(\Rightarrow C_{min}=\frac{21}{4}\Leftrightarrow x=\frac{-3}{2}\)
cho x>0, tìm Dmin = 9x2 + 3x + 1/x + 1420
\(D=9x^2+3x+\frac{1}{x}+1420=9x^2-6x+1+9x+\frac{1}{x}+1419\)
\(D=\left(3x-1\right)^2+9x+\frac{1}{x}+1419\)
Áp dụng BĐT cauchy :\(9x+\frac{1}{x}\ge2\sqrt{9x.\frac{1}{x}}=6\)
\(\Rightarrow D\ge\left(3x-1\right)^2+1419+6\ge1425\)
dấu = xảy ra khi \(\left\{\begin{matrix}x=\frac{1}{3}\\9x=\frac{1}{x}\end{matrix}\right.\Leftrightarrow x=\frac{1}{3}}\)
min=1425 khi x=1/3 dg ban ko giai dc sr nhe :)
Tìm Min: a,x2+3x+1. b, 9x2+3x+1. Tìm Max : -x2+2x-1
a/ x2 + 3x + 1
\(=x^2+2.\frac{3}{2}.x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+1\)
\(=\left(x+\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Vậy MinA = -5/4 khi x + 3/2 = 0 => x = -3/2
b/ 9x2 + 3x + 1
\(=\left(3x\right)^2+2.3x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)
\(=\left(3x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy MinB = 3/4 khi 3x + 1/2 = 0 => 3x = -1/2 => x = -1/6
c/ -x2 + 2x - 1 = -(x2 - 2x + 1) = -(x - 1)2 \(\le0\)
Vậy MaxC = 0 khi x - 1 = 0 => x = 1
a.\(=x^2+2.\frac{3}{2}x+\frac{9}{4}-\frac{5}{4}=\left(x+\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
dấu = xảy ra khi x=-3/2
b,c tt
Tìm MIN, MAX
A=x^2-4x+10
B=(1-x).(3x+4)
C=3x^2-9x+5
D= - 2x^2+5x+2
E=-3x^2-6x+5
F=x^4-2x^2+3
G=(x^2+2)^2-3
H=x^2+y^2-6x+4y+12