Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Chí Bảo
Xem chi tiết
Nguyễn Hoàng Bảo Nhi
25 tháng 4 2020 lúc 9:51

Bài 1 : 

Ta có : 

\(x^7+\frac{1}{x^7}=\left(x^3+\frac{1}{x^3}\right)\left(x^4+\frac{1}{x^4}\right)-\left(x+\frac{1}{x}\right)\)

\(\left(x+\frac{1}{x}\right)=a\Leftrightarrow\left(x+\frac{1}{x}\right)^2=a^2\)

\(\Leftrightarrow x^2+\frac{1}{x^2}+2.x.\frac{1}{x}=a^2\)

\(\Leftrightarrow x^2+\frac{1}{x^2}=a^2-2\)

\(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)\left(x^2-x.\frac{1}{x}+\frac{1}{x^2}\right)\)

               \(=a\left(x^2+\frac{1}{x^2}-1\right)=a\left(a^2-3\right)\)

\(x^4+\frac{1}{x^4}=\left(x^2+\frac{1}{x^2}\right)^2-2.x^2.\frac{1}{x^2}\)

                   \(=\left(a^2-2\right)^2-2=a^4-4a^2+4-2\)

                                                               \(=a^4-4a^2+2\)

\(\Rightarrow x^7+\frac{1}{x^7}=a.\left(a^2-3\right).\left(a^4-4a^2+2\right)-a\)

                      \(=\left(a^3-3a\right)\left(a^4-4a^2+2\right)-a\)

                         \(=a^7-4a^5+2a^3-3a^5+12a^3-6a-a\)

                          \(=a^7-7a^5+14a^3-7a\)

Khách vãng lai đã xóa
Nguyễn Hoàng Bảo Nhi
25 tháng 4 2020 lúc 15:37

Bài 2 : 

Ta có : 

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=2^2\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=4\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=\frac{2}{xy}-\frac{1}{z^2}\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{z^2}+\frac{2}{yz}+\frac{2}{zx}=0\)

\(\Rightarrow\left(\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}\right)+\left(\frac{1}{y^2}+\frac{2}{yz}+\frac{1}{z^2}\right)=0\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2+\left(\frac{1}{y}+\frac{1}{z}\right)^2=0\)

\(\Rightarrow\frac{1}{x}+\frac{1}{z}=\frac{1}{y}+\frac{1}{z}=0\) vì \(\left(\frac{1}{x}+\frac{1}{z}\right)^2,\left(\frac{1}{y}+\frac{1}{z}\right)^2\ge0\)

\(\Rightarrow x=y=-z\)

\(\Rightarrow\frac{1}{-z}+\frac{1}{-z}+\frac{1}{z}=2\Rightarrow-\frac{1}{z}=2\Rightarrow z=-\frac{1}{2}\)

\(\Rightarrow x=y=\frac{1}{2}\)

\(\Rightarrow x+2y+z=\frac{1}{2}+2.\frac{1}{2}-\frac{1}{2}=1\)

\(\Rightarrow P=1\)

Khách vãng lai đã xóa
Uchiha Sasuke 1st
Xem chi tiết
Nguyễn Mạnh Hiếu
Xem chi tiết
Văn thành
Xem chi tiết
Khôi Bùi
30 tháng 4 2019 lúc 15:23

Đặt 1/x = a ; 1/y = b ; 1/z = c 

Ta có : \(a+b+c=2;2ab-c^2=4\)

\(a^2+b^2+c^2+2ab+2bc+2ac=2ab-c^2\)

\(\Leftrightarrow a^2+b^2+c^2+2bc+2ac+c^2=0\)

\(\Leftrightarrow\left(a+c\right)^2+\left(b+c\right)^2=0\)

=> a + c = 0 và b + c = 0 

=> a = b = -c 

\(\Rightarrow\frac{1}{x}=\frac{1}{y}=-\frac{1}{z}\)

Khi đó , ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=-\frac{2}{z}+\frac{1}{z}=-\frac{1}{z}=2\Rightarrow z=-\frac{1}{2}\)

\(P=\left(x+2y+z\right)^2=4z^2\) \(=4.\left(-\frac{1}{2}\right)^2=1\)

Tham khảo nha 

Khôi Bùi
30 tháng 4 2019 lúc 15:24

\(\frac{1}{x}=\frac{1}{y}=-\frac{1}{z}\Rightarrow x=y=-z\) 

Cỏ dại
Xem chi tiết
cao hà trang
1 tháng 3 2020 lúc 14:28

áp dụng tính chất của dãy tỉ số bằng nhau ta có:\(\frac{ }{ }\)

y+z-x/x=z+x-y/y=x+y-z/z

=y+z-x+z+x-y+x+y-z/x+y+z

=(y-y)+(z-z)-(x-x)+z+x+y/x+y+z

=0+0+0+x+y+z/x+y+z=1

\(\Leftrightarrow\)x=y=z (*)

thay (*) vào B ta có:

B=(1+x/x)(1+x/x)(1+x/x)

  =2.2.2=8

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
21 tháng 8 2020 lúc 8:24

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(...=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)( vì x + y + z \(\ne\)0 )

\(\Rightarrow\hept{\begin{cases}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{cases}}\Rightarrow\hept{\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}}\Rightarrow\hept{\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}}\Rightarrow x=y=z\)

Thế x = y = z vào B ta được :

\(B=\left(1+\frac{y}{y}\right)\left(1+\frac{x}{x}\right)\left(1+\frac{z}{z}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)

Khách vãng lai đã xóa
Lê Thị Huyền Trang
Xem chi tiết
Xyz OLM
30 tháng 10 2019 lúc 22:00

Ta có : \(B=\frac{x+y}{y}.\frac{z+y}{z}=\frac{x+z}{x}=\frac{\left(x+y\right)\left(z+y\right)\left(x+z\right)}{xyz}\)

Từ \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

Nếu x + y + z = 0

=> x + y = - z

=> z + y = - x

=> z + x = - y

Khi đó : B = \(\frac{\left(-x\right)\left(-y\right)\left(-z\right)}{xyz}=-\frac{xyz}{xyz}=-1\)

Nếu x + y + z \(\ne\)0

=> \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)

Khi đó \(B=\frac{\left(x+y\right)^3}{x^3}=\frac{\left(2x\right)^3}{x^3}=\frac{2^3.x^3}{x^3}=8\)

Vậy nếu x + y + z = 0 B = - 1

       nếu x + y + z  \(\ne\)0 thì B = 8 

Khách vãng lai đã xóa
Trần Minh Quân
22 tháng 8 2020 lúc 14:30

chỉ có lm thì mới có ăn

Khách vãng lai đã xóa
Đinh Phương Linh
Xem chi tiết
Bảo Bảo
Xem chi tiết
Cao Thanh Nga
Xem chi tiết
Đinh quang hiệp
7 tháng 6 2018 lúc 15:50

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2013}=\frac{1}{x+y+z}\Rightarrow\frac{yz+xz+xy}{xyz}=\frac{1}{x+y+z}\Rightarrow\left(yz+xz+xy\right)\left(x+y+z\right)=xyz\)

\(\Rightarrow y^2z+yz^2+x^2z+xz^2+x^2y+xy^2+2xyz+xyz=xyz\)

\(\Rightarrow y^2z+yz^2+x^2z+xz^2+x^2y+xy^2+2xyz=0\)

\(\Rightarrow\left(x^2y+x^2z+xy^2+xyz\right)+\left(y^2z+xz^2+y^2z+xyz\right)=0\)

\(\Rightarrow x\left(xy+xz+y^2+yz\right)+z\left(yz+xz+y^2+xy\right)=0\)

\(\Rightarrow\left(x+z\right)\left(xy+xz+y^2+yz\right)=\left(x+z\right)\left(x\left(y+z\right)+y\left(y+z\right)\right)=\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

\(\Rightarrow\hept{\begin{cases}x+y=0\Rightarrow x^3+y^3=0\\y+z=0\Rightarrow y^5+z^5=0\\x+z=0\Rightarrow z^7+x^7=0\end{cases}}\)

\(\Rightarrow A=\left(x^3+y^3\right)\left(y^5+z^5\right)\left(z^7+x^7\right)=0\)