1. CMR 75n+7 và 10n+1 là 2 số nguyên tố cùng nhau
2. CMR 8n+9 và 9n+10 là 2 số nguyên tố cùng nhau
CMR:2n+1 và 10n+7 là 2 số nguyên tố cùng nhau.
hoặc 2n+1 và 10n+6 là 2 số nguyên tố cùng nhau.
1) Đặt 2n + 1,10n + 7 = d
⇒2n + 1⋮d⇒5 2n + 1 ⋮d⇒10n + 5⋮d
⇒ 10n + 7 − 10n + 5 ⋮d
⇒ 10n + 7 − 10n − 5 ⋮d
⇒2⋮d
⇒d ∈ 1;2
Do 2n + 1 là số lẻ
⇒d = 1
Vậy 2n + 1,10n + 7 = 1
hay 2n + 1 và 10n + 7 là 2 số nguyên tố cùng nhau
Gọi d là ƯCLN(2n+1;10n+6)
=>2n+1):d và 10n+6 ):d. < (:dấu chia hết nha>
=>5.2n+5.1 (:d
=>10n+6-10n-5 (:d
=>1 (:d
=>d=1
Vậy Ư CLN(2n+1;10n+6)=1
Vậy 2n+1 và 10n+6 là 2 số nguyên tố cùng nhau.
đáp án
Gọi d là ƯCLN(2n+1;10n+6)
=>2n+1):d và 10n+6 ):d. < (:dấu chia hết nha>
=>5.2n+5.1 (:d
=>10n+6-10n-5 (:d
=>1 (:d
=>d=1
Vậy Ư CLN(2n+1;10n+6)=1
Vậy 2n+1 và 10n+6 là 2 số nguyên tố cùng nhau.
Bài 2: CMR
a,7n+10 và 5n+7 là 2 số nguyên tố cùng nhau (n thuộc N)
b,2n+1 và 6n+5 là 2 số nguyên tố cùng nhau ( n thuộc N )
c,n+1 và 3n+4 là 2 số nguyên tố cùng nhau ( n thuộc N )
Ta có : k là ƯCLN của 7n + 10 và 5n + 7
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k
Hay 5(7n + 10 ) và 7(5n + 7 )
35n + 50 và 35n + 49 chia hết cho k
=> ĐPCM
Hai bài kia bạn làm tương tư nhé , chúc may mắn
Cho số tự nhiên n bất kì. CMR: (6n + 1) và (8n + 2) là 2 số nguyên tố cùng nhau.
chứng minh 10n^2+9n+4 và 20n^2+20+9 là hai số số nguyên tố cùng nhau
đây là toán lớp 5 á???
toán lớp 5 hay là toán lớp 6 bạn
nguyên tố không phải lớp 5 đây là troll
lớp 6 bấm lộn bạn à
Cho số tự nhiên n bất kì. CMR: (6n + 1) và (8n + 2) là 2 số nguyên tố cùng nhau.
1)Gọi ƯCLN(2n+1;6n+5)=d
Ta có: 2n+1 chia hết cho d; 6n+5 chia hết cho d
=>3(2n+1) chia hết cho d; 6n+5 chia hết cho d
=>6n+3 chia hết cho d; 6n+5 chia hết cho d
mà 3;5 là 2 số nguyên tố cùng nhau
nên 6n+3 và 6n+5 là 2 số nguyên tố cùng nhau
hay 2n+1 và 6n+5 là 2 số nguyên tố cùng nhau
=>đpcm
biết ai không nè ?
cho a= n+1, b= 4n^2+8n+5 với n là số tự nhiên. cmr a và b là 2 số nguyên tố cùng nhau
Gọi ước chung lớn nhất của a và b là d ta có:
\(\left\{{}\begin{matrix}n+1⋮d\\4n^2+8n+5⋮d\end{matrix}\right.\)
⇒ (4n 2 + 4n) + (4n + 4) + 1 ⋮ d
⇒4n(n + 1) + 4(n + 1) + 1 ⋮ d
⇒ (n +1).(4n + 4) + 1 ⋮ d
⇒ 1 ⋮ d ⇒ d = 1
⇒(a;b) = 1 hay a; b là hai số nguyên tố cùng nhau (đpcm)
CMR:
A VÀ 2A-1 LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU
A VÀ 6A-1 LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU
Chứng minh :
a, 6n + 5 và 9n + 7 là hai số nguyên tố cùng nhau ( n thuộc N* )
b,8n + 5 và 6n + 4 là hai số nguyên tố cùng nhau ( n thuộc N* )
chứng minh 10n^2+9n+4 và 20n^2+20+9 là hai số số nguyên tố cùng nhau mong các bạn giúp mik đang cần gấp