chứng minh rằng 2 STN liên tiếp bao giờ cũng có 1 số chẵn
Chứng minh rằng tích 2 số chẵn liên tiếp bao giờ cũng chia hết cho 8 .
Gọi 2 số chẵn liên tiếp là 2k và 2k + 2
Ta có :
2k(2k + 2) = 2k.2.(k + 1) = 4k(k + 1)
Vì k(k + 1) là tích của 2 số tự nhiên liên tiếp nên k(k + 1) chai hết cho 2 (1)
Mà 4 chia hết cho 4 (2)
Từ (1) và (2) suy ra 4k(k + 1) chia hết cho 2 x 4 hay 2k(2k + 2 chia hết cho 8
Vậy tích của 2 số chẵn liên tiếp chia hết cho 8
2 * 4 = 8 : 8 = 1
4 * 6 = 24 : 8 = 3
6 * 8 = 48 : 8 = 6
8 x 10 = 80 : 8 = 10
10 x 12 = 120 : 8 = 15
nhận xét thương mỗi lần tăng theo số tự nhiện liên tiếp bắt đầu từ 2
ta nhận xét k là mỗi lần tăng 8 đv bắt đầu từ 8
vì hai k liên tiếp cộng 8 lên và bắt đầu là 2 * 4 = 8 tiếp như vậy cộng lên 8 thì xẽ chia hết
chứng minh rằng :
a) 1010 - 1 chia hết cho 9
b) 109 + 2 chia hết cho 3
c) tổng hai số chẵn liên tiếp không chia hết cho 4
d) tích của 2 số tự nhiên liêp tiếp bao giờ cũng là một số chẵn
e) tích hai số chẵn liên tiếp chia hết cho 8
a) Ta có: \(10^{10}=10...0\) nên \(10^{10}-1=10...0-1=99...9\)
Nên: \(10^{10}-1⋮9\)
b) Ta có: \(10^{10}=10...0\) nên: \(10^{10}+2=10...0+2=10...2\)
Mà: \(1+0+...+2=3\)
Nên: \(10^{10}+2⋮3\)
c) Gọi số chẵn đó \(a\) số chẵn tiếp theo là:\(a+2\)
Mà tổng của 2 số chẵn đó là:
\(a+a+2=2a+2=2\left(a+1\right)\) không chia hết cho 4 nên
Tổng của 2 số chẵn liên tiêp ko chia hết cho 4
d) Gọi hai số tự nhiên đó là: \(a,a+1\)
Tích của 2 số tự nhiên đó là:
\(a\left(a+1\right)=a^2+a\)
Nếu a là số lẻ thì \(a^2\) lẻ nên \(a^2+a\) là chẳn
Nếu a là số chẵn thì \(a^2\) chẵn nên \(a^2+a\) là chẵn
Vậy tích của hai số liên tiếp là chẵn
e) Gọi hai số đó là: \(2a,2a+2\)
Tích của hai số đó là:
\(2a\cdot\left(2a+2\right)=4a^2+4a=4a\left(a+1\right)\)
4a(a+1) chia hết cho 8 nên
Tích của hai số tự nhiên liên tiếp chia hết cho 8
d) Gọi một số tự nhiên bất kỳ là a
\(\Rightarrow\) Số tự nhiên liền kề là a+1
Nếu a là số lẻ thì a+1 là số chẵn
\(\Rightarrow a\left(a+1\right)\) là số chẵn
Nếu a là số chẵn thì \(a\left(a+1\right)\) là số chẵn
Vậy tích hai số TN liên tiếp bao giờ cũng là một số chẵn
e) Gọi hai số chẵn liên tiếp lần lượt là 2a và 2a+2 ( a là một số TN bất kỳ )
Ta có \(2a\left(2a+2\right)=2a.2\left(a+1\right)=4a\left(a+1\right)\)
Ta chứng minh được tích hai số TN liên tiếp bao giờ cũng là một số chẵn
\(\Rightarrow a\left(a+1\right)\) có dạng 2k ( k bất kỳ )
\(\Rightarrow2a\left(2a+2\right)=8k⋮8\)
Vậy tích hai số chẵn liên tiếp chia hết cho 8
Chứng minh là
a)trong ba số tự nhiên liên tiếp có 1 số chia hết cho 3
b)tích của 2 số tự nhiên liên tiếp bao giờ cũng là 1 số chẵn
c) tích hai số chẵn liên tiếp chia hết cho 8
1.chứng minh rằng:
a)trong 3 stn liên tiếp ,có một và chỉ 1 số chia hết cho 3
b)trong 2 stn chẵn liên tiếp,có 1 và chỉ một số chia hết cho 4
các bạn ghi cách giải hộ mình nhé
Gọi 3 số tự nhiên liên tiếp đó là a,a+1,a+2
TH1 nếu a chia hết cho 3
=> a có dạng 3k
=>a+1=3k+1(ko chia hết cho 3)
=>a+2=3k+2(ko chia hết cho 3)
Vậy trong 3 số chỉ có duy nhất 1 số a chia hết cho 3
TH2 a+1 chia hết cho 3
=>a+1 có dạng 3k
=>a=3k-1 (ko chia hết cho 3)
=>a+2=3k+1(ko chia hết cho 3)
=>Vậy trong 3 số chỉ có duy nhất 1 số a+1 chia hết cho 3
TH3 (làm tương tự nha bạn)
b,Tick rồi mình làm tiếp cho
5. Chứng tỏ rằng tích của hai số tự nhiên liên tiếp bao giờ cũng là số chẵn.
vì sẽ có 1 số lẻ, 1 số chẵn
=> lẻ x chẵn = chẵn
lẻ x chẵn = chẵn hai và 2 số liên tiếp luôn có 1 số lẻ và 1 số chẵn
Bài 1:
Chứng tỏ rằng:
a)Tổng của 3 STN liên tiếp là một số chia hết cho 3.
b)Tổng của 4 STN liên tiếp là một số không chia hêt cho 4.
Bài 2:
Chứng tỏ rằng số có dang aaa aaa bao giờ cũng chia hết cho 7.
Bài 3:
Chứng tỏ rằng:số có dạng abc abc bao giờ cũng chia hết cho 11.
Bài 4:
Chứng tỏ rằng lấy một số có 2 chữ số, cộng vơi số hồm hai chữ ấy viết theo thứ tự ngược lại, ta luôn luôn được một số chia hết cho 11.
Bài 1 :
a/ Gọi ba số tự nhiên liên tiếp là : \(a;\left(a+1\right);\left(a+2\right)\)
Ta có : \(a+\left(a+1\right)+\left(a+2\right)=3.a+3⋮3\)
Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
b/ Gọi bốn số tự nhiên liên tiếp là : \(a;\left(a+1\right);\left(a+2\right);\left(a+3\right)\)
Ta có : \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)\)
\(=a+a+1+a+2+a+3\)
\(=4a+6\)không chia hết cho 4
Vậy tổng của bốn số tự nhiên liên tiếp không chia hết cho 4
Bài 2 :
Ta có : \(\overline{aaaaaa}=\overline{a}.111111=\overline{a}.7.31746\)
Vậy \(\overline{aaaaaa}\)bao giờ cũng chia hết cho 7
Bài 3 :
Ta có \(\overline{abcabc}=\overline{abc}.\left(1000+\overline{abc}\right)=\overline{abc}.\left(1000+1\right)=\overline{abc}.1001=\overline{abc}.7.11.13⋮11\)
Vậy : \(\overline{abcabc}\)bao giờ cũng chia hết cho 11
Bài 4 :
Gọi hai số ấy là \(\overline{ab}\)và \(\overline{ba}\)
Ta có : \(\overline{ab}+\overline{ba}=\left(10.a+b.1\right)+\left(10.b+a.1\right)=11.a+b.11⋮11\)
\(\Rightarrow\overline{ab}+\overline{ba}\)
Vậy tổng của số có hai chữ số với số có hai chữ số đó viết theo thứ tự ngược lại luôn chia hết cho 11
cho dãy số 1,3,6,10,15,...,n(n+1)/2,... chứng minh rằng tổng hai số hạng liên tiếp của dãy bao giờ cũng là số chính phương
Hai số hạng liên tiếp của dãy có dạng:
\(\dfrac{\left(n-1\right)n}{2}\) và \(\dfrac{n\left(n+1\right)}{2}\) với \(n\ge2\)
Tổng của 2 số hạng liên tiếp:
\(\dfrac{\left(n-1\right)n}{2}+\dfrac{n\left(n+1\right)}{2}=\dfrac{n}{2}\left(n-1+n+1\right)=n^2\) là 1 SCP (đpcm)
chứng minh rằng trong 3 số tự nhiên liên tiếp bất kì bao giờ cũng chọn được hai số có hiệu chia hết cho 2
Gọi 3 số cần tìm là a;a+1;a+2
Dễ thấy rằng;
a+2-a=2 chia hết cho 2
Vậy.....................................................
Chứng minh rằng trong 4 số tự nhiên liên tiếp bao giờ cũng có một số chia hết cho 4
gọi 4 số tự nhiên liên tiếp là a; a+1;a+2;a+3
nếu a chia hết cho 4 -> điều phải chứng minh
nếu a chia 4 dư 1 thì a+3 chia hết cho 4-> dpcm
nếu a chia 4 dư 2 thì a+2 chia hết cho 4 -> dpcm
nếu a chia 4 dư 3 thì a+1 chia hết cho 4 -> dpcm
tick cho mình nha
Vì trong 4 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 4
=> số đó chia hết cho 4
gọi 4 số tự nhiên liên tiếp là a; a+1;a+2;a+3
nếu a chia hết cho 4 -> điều phải chứng minh
nếu a chia 4 dư 1 thì a+3 chia hết cho 4-> dpcm
nếu a chia 4 dư 2 thì a+2 chia hết cho 4 -> dpcm
nếu a chia 4 dư 3 thì a+1 chia hết cho 4 -> dpcm
tick cho mình nha