Một số tự nhiên chia cho 2,cho 3, cho 4, cho 5, cho 6 đều dư 1, nhưng khi chia cho 7 thì không còn dư.
Hãy tìm dạng chung của các số có tính chất trên.
Tìm một số tự nhiên chia cho 2, cho 3, cho 4, cho 5, cho 6 đều đều dư 1, nhưng khi chia cho 7 thì không còn dư.
a) Tìm số nhỏ nhất có tính chất trên
b) Tìm dạng chung của các số có tính chất trên
a) 301
b) 60.k+1 chia hết cho 7 (k thuộc N)
a) Gọi số đó là a
a chia cho 2 dư 1 => a - 1 chia hết cho 2
a chia cho 3 dư 1 => a - 1 chia hết cho 3
a chia cho 4 dư 1 => a - 1 chia hết cho 4
a chia cho 5 dư 1 => a - 1 chia hết cho 5
a chia cho 6 dư 1 => a - 1 chia hết cho 6
=> a - 1 \(\in\) BC (2;3;4;5;6) = B (60) = {0;60;120;180;240;300;360;...}
=> a \(\in\) {1;61;121;181;241;301;361;...}
Mà a chia hết cho 7 và nhỏ nhất .thử lần lượt các giá trị ta được a = 301
Vậy ...
b) Gọi số tổng quát là n
Ta có : n - 1 chia hết cho 60 => n - 1 - 300 chia hết cho 60 => n - 301 chia hết cho 60
Lại có n chia hết cho 7 ; 301 chia hết cho 7 => n - 301 chia hết cho 7
=> n - 1 chia hết cho 60.7 = 420 => n - 1 = 420k => n = 420k + 1 ( k thuộc N)
Vậy dạng tổng quát của số đó là: n = 420k + 1 ( k thuộc N)
một số tự nhiên chia cho 2,cho 3, cho 4,cho 5,cho 6 đều dư 1. nhưng khi chia cho 7 thì không còn dư
a/ tìm số nhỏ nhất có tính chất trên
b/ tìm dạng chung của các số có tính chất trên
một số tự nhiên chia cho 2, cho 3, cho 4 , cho 5, cho 6 đều dư 1 , nhưng khi chia cho 7 thì không còn dư
a) tìm số nhỏ nhất có tính chất trên
b)tìm dạng chung của các số có tính chất trên
các bạn trình bày ra giúp mình nhé
gọi số cần tìm là a.
ta có : a chia cho 2;3;4;5;6 đều dư 1 => a-1 chia hết cho 2;3;4;5;6
=> a-1 là bội chung của 2;3;4;5;6
BCNN(2;3;4;5;6)= 3.5.22 =60
<=> BC(2;3;4;5;6)={60;120;180;240;300;360;..)
vậy a-1=60;120;180;240;300;360;...
hay a= 61;121;181;241;301;361;..
mà a là số tự nhiên nhỏ nhất chia hết cho 7 => a= 301
b)a=2q+1=3r+1=4p+1=5d+1=6s+1=7y
một số tự nhiên chia cho 2, cho3, cho 4, cho 5, cho 6 đều dư 1 nhưng khi chưa cho 7 thì ko còn dư
a, tìm số nhỏ nhất có tính chất trên
b, tìm dạng chung của các số có tính chất trên
a) Gọi số cần tìm là a
ta có a chia 2,3,4,5,6 đều dư 1 \(\Rightarrow\) a-1 chia hết cho 2,3,4,5,6
\(\Leftrightarrow\)a-1 là bội chung của 2,3,4,5,6
a-1= { 60;120;180;240;300;360;420;480;540;600;....}
Mặt khác ta có a chia hết cho 7 và phải là số nhỏ nhất
nếu a-1= 300 thì a=301 là số nhỏ nhât thoa mãn yêu cầu của bài toán
b, a= 2q +1= 3r+1= 4p+1= 5d+1=6s+1=7y
tìm 1 số tự nhiên chia cho 2 , cho 3 ,cho 4,cho 5,cho 6 đều dư 1 nhưng khi chia cho 7 thì ko còn dư
a.tìm số nhỏ nhất có tính chất trên ?
b.tìm dạng chung của các số có tính chất trên
a, BCNN(2;3;4;5;6) = 60. Mà 60 không chia hết cho 7. Vậy số cần tìm là 60.
b, Dạng chung của các số có tính chất trên là 60k với k thuộc N*
Một số tự nhiên chia cho 2, 3, 4, 5, 6 đều dư 1. Nhưng khi chia cho 7 thì không còn dư. Hỏi :
a. Tìm số nhỏ nhất có tính chất trên
b. Tìm dạng tổng quát của các số có tính chất trên
a/ gọi a là số cần tìm.
Nếu a chia cho 2, 3, 4, 5, 6 đều dư 1, vậy khi a trừ cho 1 sẽ chia hết cho 5 số đó và còn là bội chung của chúng, vậy ta có:
2 = 2; 3 = 3; 4 = 22; 5 = 5; 6 = 2.3.
=> BCNN (2, 3, 4, 5, 6) = 22.3.5 = 60.
Khi 60 + 1 tức là a + 1 sẽ ko chia hết cho 7, ta tiếp tục tìm số đó:
BC (2, 3, 4, 5, 6) + 1 = {121; 181; 241; 301...}
Ta thấy số 301 là số nhỏ nhất chia hết cho 7.
Vậy số cần tìm là 301.
b/ gọi số tổng quát là n, ta có:
n - 1 chia hết cho 60
=> n - 1 - 300 chia hết cho 60
=> n - 301 chia hết cho 60
Mà n chia hết cho 7
=> 301 chia hết cho 7
=> n - 301 chia hết cho 7
=> n - 1 chia hết cho 60.7 = 420
=> n - 1 = 420k
=> n = 420k + 1 (k ϵ N).
http://olm.vn/hoi-dap/question/113689.html
Một số tự nhiên chia cho 3,cho 4,cho 5,cho 6 đều dư 1 nhưng khi chia 7 thì không còn dư. Tìm số nhỏ nhất có tính chất trên.
gọi số cần tìm là a.theo bài ra ta có:
a chia 3;4;5;6 dư 1
=>a-1 chia hết cho 3;4;5;6
=>a-1 chia hết cho 60
=>a-1 thuộc {0;60;120;180;240;300;...}
=>a thuộc {1;61;121;181;241;301;...}
vì a chia hết cho 7=>a=301
vậy a=301
Một số tự nhiên chia cho 2, 3, 4, 5, 6 đều dư 1. Nhưng khi chia cho 7 thì không còn dư. Hỏi :
a. Tìm số nhỏ nhất có tính chất trên
b. Tìm dạng tổng quát của các số có tính chất trên
a. Gọi số đề bài cho là a
Do a chia 2, 3, 4, 5, 6 đều dư 1 nên a - 1 chia hết cho 2, 3, 4, 5, 6
Mà a nhỏ nhất => a - 1 nhỏ nhất => a - 1 thuộc BCNN(2,3,4,5,6)
=> a - 1 thuộc B(60)
=> a - 1 chia hết cho 60, a chia hết cho 7
=> a - 1 + 120 chia hết cho 60, a + 119 chia hết cho 7
=> a + 119 chia hết cho 60, a + 119 chia hết cho 7
=> a + 119 thuộc BC(60,7)
Do (60,7) = 1 => a + 119 thuộc B(420)
Mà a nhỏ nhất => a + 119 nhỏ nhất và khác 0
=> a + 119 = 420
=> a = 420 - 119 = 301
b) Dạng tổng quát của các số có tính chất trên là: 420k + 301 (k thuộc N)
a, goi so can tim la a
ta co : a : 2,3,4,5,6 deu du 1
suy ra : a-1 : het cho 2,3,4,5,6
( a - 1) la boi chung cua 2,3,4,5,6
a-1 = { 60,120,180,240,300,360,420,480...}
mat khac ta co a chia het cho 7 va phai la so nho nhat
neu a-1=300 thi a=301 la so nho nhat thoa man yeu cau cua de bai
b, a= 2q + 1 = 3r + 1 = 4p +1 = 6s +1 = 7y
Gọi số tự nhiên đó là X thì: X - 1 chia hết cho: 2;3;4;5;6 => X - 1 = B(2;3;4;5;6 = B(60)
Vậy X có dạng: X = 60k + 1 (1) k thuộc N
Mặt khác, X chia hết cho 7 nên 60k + 1 chia hết cho 7.
=> 56k +4k +1 chia hết cho 7
=> 4k + 1 chia hết cho 7
=> 5*(4k+1) chia hết cho 7 => 21k + 5 - k chia hết cho 7
=> k - 5 chia hết cho 7 hay k chia 7 dư 5.
=> k có dạng k = 7m + 5 ; m thuộc N
Thay vào (1) => X = 60k + 1 = 60*(7m+5) + 1 = 420m +301 với m thuộc N.
a). Số X nhỏ nhất = 301 với m = 0
b) Dạng tổng quát của X là: X = 420m + 301 với m thuộc N.
Note: Nếu bạn đã HỎI hãy có trách nhiệm khi được TRẢ LỜI!
một số tự nhiên chia cho 2 cho 3 cho 5 cho 5 đều dư 1 nhưng khi chia cho 7 thì không dư
a) tim so nho nhat co tinh chat tren
b) tìm dạng chung của các số có tính chất trên