Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyenminhanh
Xem chi tiết
Nguyễn Việt Hoàng
4 tháng 3 2020 lúc 20:24

\(\frac{x^{30}+x^{28}+x^{26}+x^{24}+...+x^4+x^2+1}{x^{28}+x^{24}+x^{20}+...+x^8+x^4+1}=\frac{\left(x^{30}+x^{26}+x^{22}+...+x^2\right)+\left(x^{28}+x^{24}+...+x^4+1\right)}{x^{28}+x^{24}+x^{20}+...+x^4+1}\)

\(=\frac{x^2\left(x^{28}+x^{24}+...+x^4+1\right)+\left(x^{28}+x^{24}+...+x^4+1\right)}{x^{28}+x^{24}+...+x^4+1}\)

\(=\frac{\left(x^2+1\right)\left(x^{28}+x^{24}+...+x^4+1\right)}{x^{28}+x^{24}+...+x^4+1}\)

\(=x^2+1\)

Khách vãng lai đã xóa
bímậtnhé
Xem chi tiết
Trieu tu Lam
Xem chi tiết
Mr Lazy
26 tháng 7 2015 lúc 12:39

Xét \(x\ne1\)

Đặt \(y=x^4\).\(M=x^{28}+x^{24}+...+x^4+1\)

\(M=y^7+y^6+...+y^2+y+1\)\(\Rightarrow Ay=y^8+y^7+...+y^2+y\)

\(\Rightarrow M\left(y-1\right)=y^8-1\Rightarrow M=\frac{y^8-1}{y-1}=\frac{x^{32}-1}{x^4-1}\)

Tương tự \(N=x^{30}+x^{28}+...+x^2+1=\frac{\left(x^2\right)^{16}-1}{x-1}=\frac{x^{32}-1}{x-1}\)

\(A=\frac{M}{N}=\frac{\frac{x^{32}-1}{x^4-1}}{\frac{x^{32}-1}{x^2-1}}=\frac{x^2-1}{x^4-1}=\frac{1}{x^2+1}\)

Thay số vô tính ra A.

 

Nguyễn Ngọc Lan
Xem chi tiết
NIJINO YUME
Xem chi tiết
Nobita Kun
28 tháng 12 2018 lúc 18:19

\(B=\frac{x^{28}+x^{24}+x^{20}+...+x^4+1}{x^{30}+x^{28}+x^{26}+...+x^2+1}\)

\(=\frac{x^{28}+x^{24}+x^{20}+...+x^4+1}{\left(x^{30}+x^{26}+x^{22}+...+x^6+x^2\right)+\left(x^{28}+x^{24}+x^{20}+...+x^4+1\right)}\)

\(=\frac{x^{28}+x^{24}+x^{20}+...+x^4+1}{x^2\left(x^{28}+x^{24}+x^{20}+...+x^4+1\right)+\left(x^{28}+x^{24}+x^{20}+...+x^4+1\right)}\)

\(=\frac{x^{28}+x^{24}+x^{20}+...+x^4+1}{\left(x^2+1\right)\left(x^{28}+x^{24}+x^{20}+...+x^4+1\right)}=\frac{1}{x^2+1}\)

Nguyễn Đức Nam
22 tháng 7 2020 lúc 20:01

tự làm mẹ đê hỏi lắm

Khách vãng lai đã xóa
lana
Xem chi tiết
hhhhhhhh
Xem chi tiết
Thùy Dương
17 tháng 12 2018 lúc 21:23
https://i.imgur.com/8KxAu00.jpg
nchdtt
Xem chi tiết
An Thy
7 tháng 7 2021 lúc 11:04

a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(=2\sqrt{7}-3\sqrt{7}+\dfrac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)

\(=-\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1=-\sqrt{7}\)

\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)

\(=\dfrac{8}{\sqrt{x}-3}\)

b) \(A>B\Rightarrow-\sqrt{7}>\dfrac{8}{\sqrt{x}-3}\Rightarrow\dfrac{8}{\sqrt{x}-3}+\sqrt{7}< 0\)

\(\Rightarrow\dfrac{\sqrt{7x}+8-3\sqrt{7}}{\sqrt{x}-3}< 0\)

Ta có: \(\left\{{}\begin{matrix}8=\sqrt{64}\\3\sqrt{7}=\sqrt{63}\end{matrix}\right.\Rightarrow8-3\sqrt{7}>0\Rightarrow8-3\sqrt{7}+\sqrt{7x}>0\)

\(\Rightarrow\sqrt{x}-3< 0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\Rightarrow0< x< 9\)

 

Dương Hạ Chi
Xem chi tiết
Thùy Dương
19 tháng 12 2018 lúc 10:48

Hỏi đáp Toán