tinh x^3+25x^2+75 với x=25
tinh gia tri bieu thuc
x^10-25x^9+25x^8-25x^7+...+25x^2-25x+25
Tính \(E=x^{20}+25x^{19}+25x^{18}+25x^{17}+...+25x^3+25x^2+25x+25\)
Với x=-24
x=-24
=>-x=24
=>-x+1=25
thay -x+1=25 vào E ta được:
E=x20+(-x+1)x19+(-x+1)x18+(-x+1)x17+...+(-x+1)x3+(-x+1)x2+(-x+1)x+(-x+1)
=x20-x20+x19-x19+x18-x18+x17-...-x4+x3-x3+x2-x2+x-x+1
=1
Vậy với x=-24 thì E=1
x = ‐24
=> ‐ X = 24
=> ‐ X + 1 = 25
thay ‐x+1=25 vào E ta được:
E = x 20 + ﴾‐ x + 1﴿ x 19 + ﴾‐ x + 1﴿ x 18 + ﴾‐ x + 1﴿ x 17 + ... + ﴾‐ x + 1﴿ x 3 + ﴾‐ x + 1 ﴿ x 2 + ﴾‐ x + 1﴿ x + ﴾‐ x + 1﴿
= x 20 ‐x 20 + x 19 ‐x 19 + x 1 8 ‐x 18 + x 17 ‐...‐ x 4 + x 3 ‐x 3 + x 2 ‐x 2 + x‐x + 1
= 1
Vậy với x=‐24 thì E=1
Học tốt nha Nguyễn Quang Linh
cảm ơn bạn...nhưng câu hỏi đó mik gửi từ ngày 22/7/2015 đến giờ sao bạn thấy mà trả lời vậy???
Căn 25x+75 +3 căn x-2=2+4căn x+3 - căn 9x-18
Giúp mình với
Lần sau bạn nhớ ghi đúng đề nhé!
\(\sqrt{25x+75}+3\sqrt{x-2}=2+4\sqrt{x+3}-\sqrt{9x-18}\)
Đk: \(x\ge2\)
pt <=> \(\sqrt{25\left(x+3\right)}+3\sqrt{x-2}=2+4\sqrt{x+3}-\sqrt{9\left(x-2\right)}\)
\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}=2+4\sqrt{x+3}-3\sqrt{x-2}\)
\(\Leftrightarrow\sqrt{x+3}+6\sqrt{x-2}=2\)
\(\Leftrightarrow x+3+36\left(x-2\right)+12\sqrt{\left(x+3\right)\left(x-2\right)}=4\)
\(\Leftrightarrow12\sqrt{x^2+x-6}=73-37x\)
phương trình vô nghiệm vì \(x\ge2\Rightarrow73-37x< 0\)mà \(VT\ge0\)
Tính giá trị của biểu thức :
A=\(x^{10}-25x^9+25x^8-25x^7+...-25^3+25x^2-25x+25\) với x=24
B=\(x^3-30x^2-31x+1\), với x=31
C= \(x^5-15x^4+16x^3-29x^2+13x\), với x=14
D. Nếu (-2+\(x^2\))(-2+\(x^2\))(-2+\(x^2\))(-2+\(x^2\))(-2+\(x^2\))=1 thì x bằng bn?
a) Với x = 24
=> x + 1 = 24 (1)
Thay (1) vào A ta được:
\(A=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(A=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...+x^3+x^2-x^2-x+x+1\)
\(A=1\)
b) Với x = 31
=> x - 1 = 30 (1)
Thay (1) vào B ta được
\(B=x^3-\left(x-1\right)x^2-\left(x-1\right)x+1\)
\(B=x^3-x^3+x^2-x^2+x+1\)
\(B=x+1\)
\(B=31+1=32\)
c) Với x = 14
=> x + 1 = 15
x + 2 = 16
2x + 1 = 29
x - 1 = 13
Thay tất cả biểu thức trên vào C ta được
\(C=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)
\(C=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)
\(C=-x\)
\(C=-14\)
d) Ta có:
\(\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)=1\)
\(\Rightarrow\left(-2+x^2\right)^5=1\)
\(\Rightarrow-2+x^2=1\)
\(\Rightarrow x^2=1+2=3\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{3}\\=-\sqrt{3}\end{matrix}\right.\)
Tinh giá trị của biểu thức:
a) ( − 75 ) . ( − 25 ) . x với x = 4
b) x + y x − y với x = 2; y = -5
a) Thay x = 4 vào biểu thức ta được ( − 75 ) . ( − 25 ) .4 = ( − 75 ) . ( − 100 ) = 7500
b) Thay x = 2, y = -5 vào biểu thức ta được 2 + ( − 5 ) 2 − ( − 5 ) = − 3 .7 = − 21
B= x20+25x19+25x18+25x17+...+25x2+25x+25 với x=-24
√( 25x + 75 ) + 3√x-2 = 2+ 4√x+3 + √9x -18
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-3\\x\ge2\end{matrix}\right.\)
\( \sqrt {25x + 75} + 3\sqrt {x - 2} = 2 + 4\sqrt {x + 3} + \sqrt {9x - 18} \\ \Leftrightarrow \sqrt {25\left( {x + 3} \right)} + 3\sqrt {x - 2} = 2 + 4\sqrt {x + 3} + \sqrt {9\left( {x - 2} \right)} \\ \Leftrightarrow 5\sqrt {x + 3} + 3\sqrt {x - 2} = 2 + 4\sqrt {x + 3} + 3\sqrt {x - 2} \\ \Leftrightarrow 5\sqrt {x + 3} + 3\sqrt {x - 2} - 4\sqrt {x + 3} - 3\sqrt {x - 2} = 2\\ \Leftrightarrow \sqrt {x + 3} = 2\\ \Leftrightarrow {\left( {\sqrt {x + 3} } \right)^2} = {2^2}\\ \Leftrightarrow x + 3 = 4\\ \Leftrightarrow x = 4 - 3\\ \Leftrightarrow x = 1\left( {KTM} \right) \)
Vậy phương trình vô nghiệm
Giải thích thêm: tại chỉ thỏa mãn điều kiện \(x\ge-3\) nhưng không thỏa mãn điều kiện \(x\ge2\))
\(\text{rút gọn bằng cách thay số bằng chữ: D=x^10+20x^9+20x^7+....+20x^3+20x^2+20x với x=-24}\)
\(\text{E=x^20+25x^19+25x^18+25x^17+...+25x^3+25x^2+25x+25 với x=-24}\)
Ta có: \(x=-24\Leftrightarrow-x=24\Leftrightarrow1-x=25\)
Thay vào E ta được:
\(E=x^{20}+\left(1-x\right)x^{19}+\left(1-x\right)x^{18}+...+\left(1-x\right)x^2+\left(1-x\right)x+\left(1-x\right)\)
\(E=x^{20}+x^{19}-x^{20}+x^{18}-x^{19}+...+x^2-x^3+x-x^2+1-x\)
\(E=1\)
Tính M=x100-25x99+25x98-25x97+25x96-................-25x3+25x2-25x+25 tại x = 24
x=24
=> x+1=25
=> M=x100-(x+1)x99+(x+1)x98-(x+1)x97+(x+1)x96-...-(x+1)x3+(x+1)x2-(x+1)x+25
=x100-x100-x99+x99+x98-x98-x97+x97+x96-...-x4-x3+x3+x2-x2-x+25
=-x+25
=-24+25
=1
Vậy M=1.