Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang Hoang
Xem chi tiết
Mr Lazy
9 tháng 8 2015 lúc 21:55

\(a\text{) }\)Áp dụng: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) (a, b > 0). Dấu "=" xảy ra khi a = b.

\(\frac{1}{a^2+b^2}+\frac{1}{ab}=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{2.\frac{\left(a+b\right)^2}{4}}=\frac{6}{\left(a+b\right)^2}\)

\(=6\left[\frac{1}{\left(a+b\right)^2}+\frac{27}{8}\left(a+b\right)+\frac{27}{8}\left(a+b\right)\right]-\frac{81}{2}\left(a+b\right)\)

\(\ge6.3\sqrt[3]{\frac{1}{\left(a+b\right)^2}.\frac{27}{8}\left(a+b\right).\frac{27}{8}\left(a+b\right)}-\frac{81}{2}\left(a+b\right)\)

\(=\frac{81}{2}-\frac{81}{2}\left(a+b\right)\)

Tương tự: \(\frac{1}{b^2+c^2}+\frac{1}{bc}\ge\frac{81}{2}-\frac{81}{2}\left(b+c\right)\)

\(\frac{1}{c^2+a^2}+\frac{1}{ca}\ge\frac{81}{2}-\frac{81}{2}\left(c+a\right)\)

Cộng theo vế ta được 

\(A\ge3.\frac{81}{2}-81\left(a+b+c\right)=3.\frac{81}{2}-81=\frac{81}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}.\)

Vậy GTNN của A là \(\frac{81}{2}.\)

 

 

Doan Minh Quân
Xem chi tiết
Đặng Hữu Hiếu
25 tháng 5 2018 lúc 9:46

Ta có (a-b)²≥0 nên a²+b²≥2ab, tương tự b²+c²≥2bc, c²+a²≥2ca, cộng vế với vế rồi chia 2 2 vế ta có a²+b²+c²≥ab+bc+ca

a, b, c là 3 cạnh tam giác nên a+b>c → c(a+b)>c², tương tự b(a+c)>b², a(b+c)>a², cộng vế với vế ta có 2(ab+bc+ca)>a²+b²+c²

๖Fly༉Donutღღ
25 tháng 5 2018 lúc 12:51

Áp dụng BĐT Cauchy cho 3 số không âm a^2 + b^2 + c^2 là ra nha bạn

QuocDat
25 tháng 5 2018 lúc 21:19

o0o Nguyễn Việt Hiếu o0o =)) người ta đã ko bt , m ko chỉ còn câu câu trả lời ...... cạn lời

minh
Xem chi tiết
pham trung thanh
18 tháng 11 2017 lúc 16:12

\(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}+\frac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)

\(=\frac{c-a}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}+\frac{a-b}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}\)

\(+\frac{b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}\)

\(=0\)

phương đặng
Xem chi tiết
Vũ Minh Tuấn
7 tháng 3 2020 lúc 11:00

3. Cho tam giác ABC vuông tại A. Theo định lí Pitago ta có:

A. AC mũ 2= AB mũ 2 + BC mũ 2 B. AB mũ 2= AC mũ 2 + BC mũ 2

C. BC mũ 2 = AB mũ 2 + AC mũ 2 D. BC mũ 2 = AB mũ 2 - AC mũ 2

Chúc bạn học tốt!

Khách vãng lai đã xóa
Nguyễn Hồng Phúc
Xem chi tiết
Nguyễn Anh Thư
Xem chi tiết
Min Trâm
Xem chi tiết
Min Trâm
Xem chi tiết
Nguyễn Duy Đạt
13 tháng 10 2016 lúc 19:50

d) (b+c)(b+a)(c-a)

c) (b-1)(ac+1-a-c)

thông cảm 2 câu đầu chưa nghĩ ra 

Min Trâm
Xem chi tiết
Nguyễn Công Huân
19 tháng 10 2016 lúc 17:58

cho mình k mình giúp

Min Trâm
19 tháng 10 2016 lúc 18:00

- Giúp với ạ