Cho 2 đường thẳng d1: y= 3x+4 và d2: y = \(\frac{-1}{3}\)x +2. Cho biết d1 cắt Ox tại A, d1 cắt Oy tại B, d2 cắt Ox tại C, d2 cắt Oy tại D, d1 cắt d2 tại M.
a) chứng minh tam giác AMC vuông tại M
b) Tính diện tích tam giác AMC, AMO, ABO
Cho đường thẳng
(d1):y=2x+4
(d2):y=\(\dfrac{-1}{2}\)x+1
a)Vẽ các đường thẳng d1,d2 trên cùng 1 hệ trục tọa độ
b) d1cắt Ox tại A,cắt Oy tại B.d2 cắt Ox tại C,cắt Oy lại D.d1 cắt d2 tại M.Chứng minh tam giác MAC vuông tại A
c)Tính diện tích tam giác MAC
a:
b: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\2x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\2x=-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=2x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\cdot0+4=4\end{matrix}\right.\)
Tọa độ C là:
\(\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
Tọa độ M là:
\(\left\{{}\begin{matrix}2x+4=-\dfrac{1}{2}x+1\\y=2x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{2}x=-3\\y=2x+4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-3:\dfrac{5}{2}=-3\cdot\dfrac{2}{5}=-\dfrac{6}{5}\\y=2\cdot\dfrac{-6}{5}+4=\dfrac{-12}{5}+4=\dfrac{8}{5}\end{matrix}\right.\)
A(-2;0); C(2;0); M(-1,2;1,6)
\(AC=\sqrt{\left(2+2\right)^2+\left(0-0\right)^2}=\sqrt{4^2}=4\)
\(AM=\sqrt{\left(-1,2+2\right)^2+\left(1,6-0\right)^2}=\dfrac{4\sqrt{5}}{5}\)
\(CM=\sqrt{\left(-1,2-2\right)^2+1,6^2}=\dfrac{8\sqrt{5}}{5}\)
Vì \(MA^2+MC^2=AC^2\)
nên ΔMAC vuông tại M
c: Vì ΔMAC vuông tại M
nên \(S_{MAC}=\dfrac{1}{2}\cdot MA\cdot MC=\dfrac{1}{2}\cdot\dfrac{4\sqrt{5}}{5}\cdot\dfrac{8\sqrt{5}}{5}=\dfrac{2\cdot8}{5}=\dfrac{16}{5}\)
cho 2 đường thẳng y=2x+4(d1);y=-1/2x+1(d2)
(d1) cắt Ox taí A ,cắt Oy tại B
(d2) cắt Ox tại C ,cắt Oy tại D
(d1)cắt (d2) tại M
a,chứng minh tam giác MAC vuông tại M
b,tính diện tích tích tam giác MAC
Cho đường thẳng d1 : y= 3x + 4 và d2 : y= -1/3x + 2 . Cho biết d1 giao với ox tại A , d1 giao với oy tại B , d2 giao với ox tại C , d2 giao với oy tại D , d1 giao với d2 tại M
a ) chứng minh tam giác AMC vuông tại M
b) tính diện tích tam giác AMC , tam giác AMO , tam giác ABO , tam giác BOD
3 tick nếu giải đc
cho hai đường thẳng y=2x+4(d1) và y=\(-\dfrac{1}{2}\)x+1(d2)
(d1) cắt Ox tại A,cắt Oy tại B
(d2) cắt Ox tại C ,cắt Oy tại D
(d1)cắt (d2) tại M.
CM tam giác MAC vuông tại M và tính diện tích tam giác đó
a)(d1) vuông góc với (d2) tại M (vì tích hệ số góc của 2 đường thẳng a
\(\times\)a'=2\(\times\)\(-\dfrac{1}{2}\)=-1
vậy tam giác MAC vuông tại M
b)hoành độ M là nghiệm của phương trình:
2x+4=\(-\dfrac{1}{2}\)x+1
<=>2x+\(\dfrac{1}{2}\)x=1-4
<=>\(\dfrac{5}{2}\)x =-3
<=> x=\(\dfrac{-6}{5}\)
=> Y=2\(\times\)\(\dfrac{-6}{5}\)+4=\(\dfrac{8}{5}\)
AC=4(vẽ sơ đồ là bạn có thể bt đc)
diện tích tam giác AMC là
Samc=\(\dfrac{1}{2}\)\(\times\)AC\(\times\)MH
=\(\dfrac{1}{2}\)\(\times\)4\(\times\)\(\dfrac{8}{5}\)=\(\dfrac{16}{5}\)(đơn vị diện tích)
Cho hai đường thẳng y = 2x+1 ; y = \(\dfrac{-1}{2}\)+ 5
( d1) cắt Ox tại A, cắt Oy tại B
(d2) cắt Ox tại C, cắt Oy tại D
(d1) cắt (d2) tại M
a, chứng minh tam giác MAC vuông tạiM
Vì 2*(-1/2)=-1
nên (d1) vuông góc với (d2)
=>ΔMAC vuông tại M
1. viết phương trình đường thẳng (d') biết (d') // (d) có phương trình y= -x +1 và đi qua M ( 2; 1 ) 2. Cho (d1) : y = 2x + 4; (d2) : y = - \(\dfrac{1}{2}\)x + 1, (d1) cắt Ox tại A, cắt Oy tại B, (d2) cắt Ox tại C, cắt Oy tại D, (d1) cắt (d2) tại M a) Cm △ MAC vuông tại M
b) Tính S△MAC
Câu 2:
Tọa độ điểm A là:
\(\left\{{}\begin{matrix}y=0\\2x+4=0\end{matrix}\right.\Leftrightarrow A\left(-2;0\right)\)
Tọa độ điểm B là:
\(\left\{{}\begin{matrix}x=0\\y=2\cdot0+4=4\end{matrix}\right.\)
=>B(0;4)
Tọa độ điểm C là:
\(\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x+1=0\end{matrix}\right.\Leftrightarrow C\left(2;0\right)\)
Tọa độ điểm D là:
\(\left\{{}\begin{matrix}x=0\\y=\dfrac{-1}{2}\cdot0+1=1\end{matrix}\right.\Leftrightarrow D\left(0;1\right)\)
Tọa độ điểm M là:
\(\left\{{}\begin{matrix}2x+4=-\dfrac{1}{2}x+1\\y=2x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1,2\\y=1,6\end{matrix}\right.\)
M(-1,2;1,6); A(-2;0); B(0,4); C(2;0); D(0;1)
\(\overrightarrow{MA}=\left(-0.8;-1.6\right)\)
\(\overrightarrow{MC}=\left(3.2;-1.6\right)\)
Vì \(\overrightarrow{MA}\cdot\overrightarrow{MC}=0\)
nên ΔMAC vuông tại M
b: \(MA=\sqrt{\left(-0.8\right)^2+\left(-1.6\right)^2}=\dfrac{4}{5}\sqrt{5}\)
\(MC=\sqrt{3.2^2+1.6^2}=\dfrac{8}{5}\sqrt{5}\)
\(S_{MAC}=\dfrac{4}{5}\sqrt{5}\cdot\dfrac{8}{5}\sqrt{5}:2=3.2\)
Cho y=x+3 (d1) ;y=(2m+1)x+3 (d2) \(\left(m\ne-\frac{1}{2};m\ne0\right)\) (d1) cắt Ox tại A ,(d2) cắt Oy tại B , (d1) cắt (d2) tại C . Tìm m để tam giác ABC cân tại C
Cho đường thẳng y=3x-5 (d)
a) Xác định (d1) vuông góc với đường thẳng (d) và cắt trục Ox tại A, cắt trục 0y tại B sao cho AB=2√10
b) Xác định (d2) biết (d2)// (d) và cắt trục Ox tại C , cắt trục Oy tại điểm D sao cho →diện tích tam giác OCD=6 (đơn vị độ dài)
→ Tạo thành tam giác OCD cân
a: Đặt (d1): y=ax+b(a<>0)
Vì (d1) vuông góc với (d) nên 3a=-1
=>\(a=-\dfrac{1}{3}\)
Vậy: (d1): \(y=-\dfrac{1}{3}x+b\)
Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\-\dfrac{1}{3}x+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\-\dfrac{1}{3}x=-b\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\\dfrac{x}{3}=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3b\\y=0\end{matrix}\right.\)
=>A(3b;0)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=-\dfrac{1}{3}\cdot0+b=b\end{matrix}\right.\)
=>B(0;b)
\(AB=2\sqrt{10}\)
=>\(AB^2=40\)
=>\(\left(0-3b\right)^2+\left(b-0\right)^2=40\)
=>\(10b^2=40\)
=>\(b^2=4\)
=>b=2 hoặc b=-2
Vậy: (d1): y=-1/3x+2 hoặc (d1): y=-1/3x-2
b: Đặt (d2): y=ax+b
Vì (d2)//(d) nên \(\left\{{}\begin{matrix}a=3\\b\ne-5\end{matrix}\right.\)
Vậy: (d2): y=3x+b
Tọa độ C là:
\(\left\{{}\begin{matrix}y=0\\3x+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=-\dfrac{b}{3}\end{matrix}\right.\)
=>\(C\left(-\dfrac{b}{3};0\right)\)
tọa độ D là:
\(\left\{{}\begin{matrix}x=0\\y=3x+b=3\cdot0+b=b\end{matrix}\right.\)
=>D(0;b)
\(OC=\sqrt{\left(-\dfrac{b}{3}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{b}{3}\right)^2+0}=\dfrac{\left|b\right|}{3}\)
\(OD=\sqrt{\left(0-0\right)^2+\left(b-0\right)^2}=\sqrt{0^2+b^2}=\left|b\right|\)
Vì Ox\(\perp\)Oy nên OC\(\perp\)OD
=>ΔOCD vuông tại O
=>\(S_{OCD}=\dfrac{1}{2}\cdot OC\cdot OD\)
=>\(S_{OCD}=\dfrac{\dfrac{1}{2}\left|b\right|}{3}\cdot\left|b\right|=\dfrac{1}{2}\cdot\dfrac{b^2}{3}\)
Để \(S_{OCD}=6\) thì \(\dfrac{b^2}{6}=6\)
=>\(b^2=36\)
=>\(b=\pm6\)
Vậy: (d2): y=3x+6 hoặc (d2): y=3x-6
Để ΔOCD cân tại O thì OC=OD
=>\(\dfrac{\left|b\right|}{3}=\left|b\right|\)
=>\(\left|b\right|=0\)
=>b=0
Vậy: (d2): y=3x