Bài 1: Làm tính chia: (3x4-17x3+11x2-6x+5):(x-5)
phân tích đa thức thành nhân tử . Câu hỏi của nguoiemtinhthong.
Bài 1.1.2x2+5x−1=7x3−1−−−−−√1.1.2x2+5x−1=7x3−1
Bài 1.2.3x−1−−−−√+2x+1−−−−√=5x2−1−−−−−√41.2.3x−1+2x+1=5x2−14
Bài 1.3.3x2+4x−5−−−−−−−−−√+x−3−−−−√=11x2+25x+2−−−−−−−−−−−−√1.3.3x2+4x−5+x−3=11x2+25x+2
Bài 1.4.2x2−2x+2=3(x−2)(x2+x)−−−−−−−−−−−−√1.4.2x2−2x+2=3(x−2)(x2+x)
Bài 1.5.4x2−4x−10=8x2−6x−10−−−−−−−−−−−√1.5.4x2−4x−10=8x2−6x−10
Bài 1.6.2x2+3x+1−−−−−−−−−−√−2x2−2−−−−−−√=x+1
Nếu ol thì tham khảo nah nguoiemtinhthong.
1.1
2x2+5x−1=7x3−1−−−−−√2x2+5x−1=7x3−1
⇔2(x2+x+1)+3(x−1)−7(x−1)(x2+x+1)−−−−−−−−−−−−−−−√(1)⇔2(x2+x+1)+3(x−1)−7(x−1)(x2+x+1)(1)
Đặt a=x−1−−−−−√;b=x2+x+1−−−−−−−−√;a≥0;b>0a=x−1;b=x2+x+1;a≥0;b>0
pt (1) trở thành 3a2+2b2−7ab=03a2+2b2−7ab=0
a=2ba=2b v a=13ba=13b
Các bạn tự giải quyết tiếp nhé.
1.2
TXĐ D=[1;+∞)D=[1;+∞)
đặt a=x−1−−−−−√4;b=x+1−−−−−√4;a,b≥0a=x−14;b=x+14;a,b≥0
pt (2) trở thành 3a2+2b2−5ab=03a2+2b2−5ab=0
⇔a=b⇔a=b v a=23ba=23b
...
1.3
D=[3;+∞)D=[3;+∞)
Đặt a=x2+4x−5−−−−−−−−−√;b=x−3−−−−−√;a,b≥0a=x2+4x−5;b=x−3;a,b≥0
pt (3) trở thành 3a+b=11a2−19b2−−−−−−−−−√3a+b=11a2−19b2
⇔2a2−6ab−20b2=0⇔2a2−6ab−20b2=0
⇒a=5b⇒a=5b
...
1.4
ĐK
⇔2x2−2x+2=3(x−2)x(x+1)−−−−−−−−−−−−√2x2−2x+2=3(x−2)x(x+1)
⇔(x2−2x)+2(x+1)=3(x2−2x)(x+1)−−−−−−−−−−−−−√2(x2−2x)+2(x+1)=3(x2−2x)(x+1)
Đặt x2−2x−−−−−−√=ax2−2x=a; x+1−−−−−√=bx+1=b (a;b\geq0)
⇔2a2+2b2=3ab
1.5
Đặt 4x2−4x−10=t4x2−4x−10=t (t \geq 0)
⇔t=t+4x2−2x−−−−−−−−−−√t=t+4x2−2x
⇔t2−t−4x2+2x=0t2−t−4x2+2x=0
Δ=1−4(2x−4x2)=(4x−1)2Δ=1−4(2x−4x2)=(4x−1)2
⇒t=1−2xt=1−2x hoặc t=2xt=2x
1.1
2.2+5.-1=7.3-1-----v2.2+5.-1=7.3-1
2(.2+x+1)+3(x-1)
3a+b=11a2-19b2
tóm tắt
Bài 1: Làm tính chia
a) (5x3-14x2+12x+8):(x+2)
b) (2x4- 3x3+4x2+1): (x2-1)
Bài 2: Tìm a để phép chia là phép chia hết
11x2 - 5x - a chia hết cho x + 5
Bài 3: Tìm giá trị nguyên của n để giá trị của biểu thức 2n2 + n – 7 chia hết cho giá trị của biểu thức n – 2
Bài 3:
Ta có: \(2n^2+n-7⋮n-2\)
\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
Bài 5: Giải các phương trình sau:
a. (3x - 1)2 - (x + 3)2 = 0
b. x3 = \(\dfrac{x}{49}\)
c. x2 - 7x + 12 = 0
d. 4x2 - 3x -1 = 0
e. x3 - 2x - 4 = 0
f. x3 + 8x2 + 17x +10 = 0
g. x3 + 3x2 + 6x + 4 = 0
h. x3 - 11x2 + 30x = 0
a. (3x - 1)2 - (x + 3)2 = 0
\(\Leftrightarrow\left(3x-1+x+3\right)\left(3x-1-x-3\right)=0\)
\(\Leftrightarrow\left(4x+2\right)\left(2x-4\right)=0\)
\(\Leftrightarrow4x+2=0\) hoặc \(2x-4=0\)
1. \(4x+2=0\Leftrightarrow4x=-2\Leftrightarrow x=-\dfrac{1}{2}\)
2. \(2x-4=0\Leftrightarrow2x=4\Leftrightarrow x=2\)
S=\(\left\{-\dfrac{1}{2};2\right\}\)
b. \(x^3=\dfrac{x}{49}\)
\(\Leftrightarrow49x^3=x\)
\(\Leftrightarrow49x^3-x=0\)
\(\Leftrightarrow x\left(49x^2-1\right)=0\)
\(\Leftrightarrow x\left(7x+1\right)\left(7x-1\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(7x+1=0\) hoặc \(7x-1=0\)
1. x=0
2. \(7x+1=0\Leftrightarrow7x=-1\Leftrightarrow x=-\dfrac{1}{7}\)
3. \(7x-1=0\Leftrightarrow7x=1\Leftrightarrow x=\dfrac{1}{7}\)
*Cách khác:
a) Ta có: \(\left(3x-1\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(3x-1\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=-x-3\\3x-1=x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-2\\2x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=2\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{1}{2};2\right\}\)
làm tính chia (3x^4+x^3+6x-5):(x^2+1)
Bài 5:
1) a) Cho hai đa thức:
P (x) = 5x2 + 3x3 - 5x2 + 2x3 – 2 +4x – 4x2 + x3
Q(x) = 6x – x3 + 5 – 4x3 + 6 – 3x2 – 7x2
Tính M(x) = P(x) + Q(x)
b) Tìm C(x) biết: (5x2 + 9x – 3x4 + 7x3 -12) + C(x) = -2x3 + 9 – 6x + 7x4 -2x3
2) Tìm nghiệm của các đa thức sau
a) 4x - b) x2 – 4x +3
a: P(x)=6x^3-4x^2+4x-2
Q(x)=-5x^3-10x^2+6x+11
M(x)=x^3-14x^2+10x+9
b: \(C\left(x\right)=7x^4-4x^3-6x+9+3x^4-7x^3-5x^2-9x+12\)
=10x^4-11x^3-5x^2-15x+21
Bài 1 : làm tính chia
a, ( 6x^2 + 13x - 5x ) : 2x + 5
b, ( 12x^2 - 14x + 3 - 6x^3 + x^4) : (1- 4x + x^2)
c, ( 2x^2 - 5x^3 + 2x + 2x^4 -1 ):( x^2 - 2x-1)
d, ( x^2 + 2xy + y^2 ) : x +y
a: \(=\dfrac{6x^3+13x^2-5x}{2x+5}=\dfrac{6x^3+15x^2-2x^2-5x}{2x+5}=3x^2-x\)
b: \(=\dfrac{x^4-6x^3+12x^2-14x+3}{x^2-4x+1}\)
\(=\dfrac{x^4-4x^3+x^2-2x^3+8x^2-2x+3x^2-12x+3}{x^2-4x+1}\)
\(=x^2-2x+3\)
d: \(=\dfrac{\left(x+y\right)^2}{x+y}=x+y\)
Cho f(x)=x4+6x3+11x2+6x
a/ Chứng minh f(x) ⋮ 24
b/ Điều kiện cho x để f(x) ⋮ 5
c/ Điều kiện cho x để f(x) ⋮ 72
\(f\left(x\right)=x^4+6x^3+11x^2+6x=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
\(x\) là số nguyên nên \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\) là tích của \(4\) số nguyên liên tiếp nên trong đó có nhất một số chia hết cho \(4\), một số chia hết cho \(3\), một số chia hết cho \(2\) nhưng không chia hết cho \(4\) nên \(f\left(x\right)\) chia hết cho \(2.3.4=24\).
Để \(f\left(x\right)\) chia hết cho \(5\) thì \(x,x+1,x+2,x+3\) có một số chia hết cho \(5\).
Có \(72=2.4.9\) nên để \(f\left(x\right)\) chia hết cho \(72\) thì trong \(4\) số \(x,x+1,x+2,x+3\) có một số chia hết cho \(9\) hoặc hai số chia hết cho \(3\), suy ra \(x\) chia hết cho \(3\).
giả phương trình sau: 3x4-11x2+10=0
`3x^{4}-11x^{2}+10=0`
`<=>3x^{4}-6x^{2}-5x^{2}+10=0`
`<=>(x^{2}-2)(3x^{2}-5)=0`
`<=>x^{2}=2` hoặc `x^{2}=5/3`
\(<=>x=\pm \sqrt{2}\) hoặc \(x=\pm \dfrac{\sqrt{15}}{3}\)
1/2 x 3 + 1/ 3x4 + 1/ 4 x 5 + 1/ 5 x 6 + 1/ 6x 7 + 1/ 7x 8 +1/ 8 x 9+ 1/9 x 10