Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Cao Vỹ Lượng
Xem chi tiết
Nguyệt
4 tháng 12 2018 lúc 15:39

Đặt\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\Rightarrow x=5k,y=4k,z=3k\)

\(\Rightarrow P=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4k}{6k}=\frac{2}{3}\)

p/s: bn viết sai đề đoạn này: x+2x=x+2y nhé =))

nguyễn minh thư
Xem chi tiết
khucdannhi
Xem chi tiết
kudo shinichi
29 tháng 12 2018 lúc 19:29

Có: x,y,z tỉ lệ với 5;4;3

\(\Rightarrow\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)

Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\)

\(\Rightarrow x=5k;y=4k;z=3k\)

\(P=\frac{x+2y-3z}{x-2y+3z}\)

\(\Rightarrow P=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}\)

\(\Leftrightarrow P=\frac{4k}{6k}\)

\(\Leftrightarrow P=\frac{2}{3}\)

Vậy \(P=\frac{2}{3}\)

Nguyễn Anh Tú
Xem chi tiết
tân
Xem chi tiết
Akai Haruma
25 tháng 8 2024 lúc 16:36

Lời giải:

Vì $x,y,z$ tỉ lệ với $5,4,3$ nên:

$\frac{x}{5}=\frac{y}{4}=\frac{z}{3}$

Đặt $\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\Rightarrow x=5k; y=4k; z=3k$.

Khi đó:

$P=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}$

$=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4k}{6k}=\frac{2}{3}$

Lại Chí Hào
Xem chi tiết
Khánh Ngọc
30 tháng 10 2020 lúc 21:00

x,y,z tỉ lệ với 5,4,3 => \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)

Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\)

=> x = 5k ; y = 4k ; z = 3k

=> \(P=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4}{6}=\frac{2}{3}\)

Vậy P = 2/3

Khách vãng lai đã xóa
Linh Luna
Xem chi tiết
Gia Hân Ngô
31 tháng 10 2017 lúc 16:40

https://hoc24.vn/hoi-dap/question/477228.html

quachtxuanhong23
Xem chi tiết
Nguyễn Trần Thùy Trang
Xem chi tiết
Lê Minh Vũ
18 tháng 10 2021 lúc 15:26

Vì x, y, z tỉ lệ với 5, 4, 3 nên ta có: \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{2y}{8}=\frac{3z}{9}=\frac{x+2y-3z}{5+8-9}=\frac{x+2y-3z}{4}\)

\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{2y}{8}=\frac{3z}{9}=\frac{x-2y+3z}{5-8+9}=\frac{x-2y+3z}{6}\)

Do đó:\(\frac{x+2y-3x}{4}=\frac{x-2y+3x}{6}\)

\(\Rightarrow\)\(\frac{x+2y-3z}{x-2y+3z}=\frac{4}{6}=\frac{2}{3}\)

Vậy \(P=\frac{2}{3}\)

Khách vãng lai đã xóa