Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lương phong c1
Xem chi tiết
Không Một Ai
4 tháng 9 2019 lúc 17:24

undefined

✿✿❑ĐạT̐®ŋɢย❐✿✿
4 tháng 9 2019 lúc 17:25

Ta có : \(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=x+y+z\) (1)

Áp dụng tính chất dãy tỉ số bằng nhau cho 3 đăng thức đầu tiên ta được :

\(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+1+x+z+1+x+y-2}=\frac{x+y+z}{2.\left(x+y+x\right)}=\frac{1}{2}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{1}{2}=x+y+z\)\(\left\{{}\begin{matrix}2x=y+z+1\\2y=z+x+1\\2z=x+y-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-1=\frac{1}{2}\\3y-1=\frac{1}{2}\\3z+2=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{matrix}\right.\)

Vậy : ....

Vũ Minh Tuấn
4 tháng 9 2019 lúc 17:44

Bạn tham khảo tại đây nhé: Câu hỏi của Trần Thanh Nga .

Chúc bạn học tốt!

Nguyễn Vũ Quỳnh Anh
Xem chi tiết
Phạm Hồng Khánh Lnh
Xem chi tiết
Vũ Hân
Xem chi tiết
Ly Phan
Xem chi tiết
khúc thị xuân quỳnh
Xem chi tiết
Tsubaki Asahina
21 tháng 8 2015 lúc 11:49

\(\left(x-\frac{1}{2}\right)\left(y+\frac{1}{3}\right)\left(z-2\right)=0\) và \(x+2=y+3=z+4\)

\(\Rightarrow x-\frac{1}{2}=0\) hoặc \(y+\frac{1}{3}=0\) hoặc \(z-2=0\)

\(\Rightarrow x=\frac{1}{2}\)            |         \(y=-\frac{1}{3}\)     |       \(z=2\)

Khi \(x=\frac{1}{2}\) thì:

\(\frac{1}{2}+2=\frac{5}{2}\)

\(y=\frac{5}{2}-3=-\frac{1}{2}\)

\(z=\frac{5}{2}-4=\frac{-3}{2}\)

Khi \(y=\frac{-1}{3}\)  thì:

\(\frac{-1}{3}+3=\frac{8}{3}\)

\(x=\frac{8}{3}-2=\frac{2}{3}\)

\(z=\frac{8}{3}-4=-\frac{4}{3}\)

Khi \(z=2\) thì:

\(2+4=6\)

\(x=6-2=4\)

\(y=6-3=3\)

Vậy (x,y,z) = \(\left(\frac{1}{2};-\frac{1}{2};-\frac{3}{2}\right)\)    ;    \(\left(\frac{2}{3};-\frac{1}{3};-\frac{4}{3}\right)\)  ;    \(\left(4;3;2\right)\)

Thương
Xem chi tiết
Kim Taehyung
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
 Mashiro Shiina
18 tháng 12 2017 lúc 13:01

Sửa đề: \(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z\)

Lời giải:

Xét: \(x+y+z=0\Leftrightarrow\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z=0\Leftrightarrow x=y=z=0\)

Xét: \(x+y+z\ne0\) áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{y+z+x+z+x+y+1+1-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{y+z+1}=\dfrac{1}{2}\\\dfrac{y}{x+z+1}=\dfrac{1}{2}\\\dfrac{z}{x+y-2}=\dfrac{1}{2}\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y+z+1=2x\\x+z+1=2y\\x+y-2=2z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\) (1)

Từ \(x+y+z=\dfrac{1}{2}\) ta có: \(\left\{{}\begin{matrix}y+z=\dfrac{1}{2}-x\\x+y=\dfrac{1}{2}-z\\x+z=\dfrac{1}{2}-y\end{matrix}\right.\)

Thay vào pt(1) ta có:

\(\dfrac{x}{\dfrac{1}{2}-x+1}=\dfrac{y}{\dfrac{1}{2}-y+1}=\dfrac{z}{\dfrac{1}{2}-z-2}=\dfrac{1}{2}\)

Dễ dàng tìm được \(x;y;z\)