Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ank viet
3 tháng 12 2018 lúc 18:01

(2x+1)^2-81y^2

=(2x+1-9y)(2x+1+9y)

Rinz Ny
Xem chi tiết
Minh Triều
17 tháng 6 2015 lúc 15:58

a/ 4x^2 + 4x +1=(2x)2+2.2x.1+12=(2x+1)2=(2x+1)(2x+1)

c/ 81y^4 - 16x^6=(9y2)2-(4x3)2=(9y2+4x3)(9y2-4x3)

d/ 4x^2 + y^2 + z^2 + 4xy + 2yz + 4xz=[(2x)2+4xy+y2]+(4xz+2yz)+z2

=(2x+y)2+2z(2x+y)+z2

=(2x+y+z)2

=(2x+y+z)(2x+y+z)

Nguyễn Việt Minh Đăng 35
Xem chi tiết
Nguyễn Đức Trí
22 tháng 8 2023 lúc 16:26

2) \(x^4-5x^2+4\)

\(=x^4-x^2-4x^2+4\)

\(=x^2\left(x^2-1\right)-4\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2-4\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\)

nghia
Xem chi tiết
Toru
23 tháng 9 2023 lúc 18:38

Bài 1.

\(a, (3x-4)^2\)

\(=\left(3x\right)^2-2\cdot3x\cdot4+4^2\)

\(=9x^2-24x+16\)

\(b,\left(1+4x\right)^2\)

\(=1^2+2\cdot1\cdot4x+\left(4x\right)^2\)

\(=16x^2+8x+1\)

\(c,\left(2x+3\right)^3\)

\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot3+3\cdot2x\cdot3^2+3^3\)

\(=8x^3+36x^2+54x+27\)

\(d,\left(5-2x\right)^3\)

\(=5^3-3\cdot5^2\cdot2x+3\cdot5\cdot\left(2x\right)^2-\left(2x\right)^3\)

\(=125-150x+60x^2-8x^3\)

\(e,49x^2-25\)

\(=\left(7x\right)^2-5^2\)

\(=\left(7x-5\right)\left(7x+5\right)\)

\(f,\dfrac{1}{25}-81y^2\)

\(=\left(\dfrac{1}{5}\right)^2-\left(9y\right)^2\)

\(=\left(\dfrac{1}{5}-9y\right)\left(\dfrac{1}{5}+9y\right)\)

Bài 2.

\(a,\left(x-5\right)^2-\left(x+7\right)\left(x-7\right)=8\)

\(\Rightarrow x^2-2\cdot x\cdot5+5^2-\left(x^2-7^2\right)=8\)

\(\Rightarrow x^2-10x+25-\left(x^2-49\right)=8\)

\(\Rightarrow x^2-10x+25-x^2+49=8\)

\(\Rightarrow\left(x^2-x^2\right)-10x=8-25-49\)

\(\Rightarrow-10x=-66\)

\(\Rightarrow x=\dfrac{33}{5}\)

\(b,\left(2x+5\right)^2-4\left(x+1\right)\left(x-1\right)=10\)

\(\Rightarrow\left(2x\right)^2+2\cdot2x\cdot5+5^2-4\left(x^2-1^2\right)=10\)

\(\Rightarrow4x^2+20x+25-4x^2+4=10\)

\(\Rightarrow\left(4x^2-4x^2\right)+20x=10-25-4\)

\(\Rightarrow20x=-19\)

\(\Rightarrow x=\dfrac{-19}{20}\)

#\(Toru\)

Kiều Vũ Linh
23 tháng 9 2023 lúc 18:47

Bài 1

a) (3x - 4)²

= (3x)² - 2.3x.4 + 4²

= 9x² - 24x + 16

b) (1 + 4x)²

= 1² + 2.1.4x + (4x)²

= 1 + 8x + 16x²

c) (2x + 3)³

= (2x)³ + 3.(2x)².3 + 3.2x.3² + 3³

= 8x³ + 36x² + 54x + 27

d) (5 - 2x)³

= 5³ - 3.5².2x + 3.5.(2x)² - (2x)³

= 125 - 150x + 60x² - 8x³

e) 49x² - 25

= (7x)² - 5²

= (7x - 5)(7x + 5)

f) 1/25 - 81y²

= (1/5)² - (9y)²

= (1/5 - 9y)(1/5 + 9y)

Toru
23 tháng 9 2023 lúc 18:52

Bài 3.

\(a,A=x^2-6x+19\)

\(=x^2-6x+9+10\)

\(=\left(x^2-2\cdot x\cdot3+3^2\right)+10\)

\(=\left(x-3\right)^2+10\)

Ta thấy: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-3\right)^2+10\ge10\forall x\)

Dấu \("="\) xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy: \(Min_A=10\) khi \(x=3\)

\(b,B=-x^2+8x-20\)

\(=-x^2+8x-16-4\)

\(=-\left(x^2-8x+16\right)-4\)

\(=-\left(x^2-2\cdot x\cdot4+4^2\right)-4\)

\(=-\left(x-4\right)^2-4\)

Ta thấy: \(\left(x-4\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-4\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-4\right)^2-4\le-4\forall x\)

Dấu \("="\) xảy ra \(\Leftrightarrow x-4=0\Leftrightarrow x=4\)

Vậy \(Max_B=-4\) khi \(x=4\)

\(c,C=4x^2+12x+100\)

\(=4x^2+12x+9+91\)

\(=\left[\left(2x\right)^2+2\cdot2x\cdot3+3^2\right]+91\)

\(=\left(2x+3\right)^2+91\)

Ta thấy: \(\left(2x+3\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x+3\right)^2+91\ge91\forall x\)

Dấu \("="\) xảy ra \(\Leftrightarrow2x+3=0\Leftrightarrow x=-\dfrac{3}{2}\)

Vậy \(Min_C=91\) khi \(x=\dfrac{-3}{2}\)

\(d,D=25+4x-x^2\)

\(=-x^2+4x-4+29\)

\(=-\left(x^2-2\cdot x\cdot2+2^2\right)+29\)

\(=-\left(x-2\right)^2+29\)

Ta thấy: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2+29\le29\forall x\)

Dấu \("="\) xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy \(Max_D=29\) khi \(x=2\)

#\(Toru\)

Lê Trinh
Xem chi tiết
Lê Trinh
Xem chi tiết
Lê Trinh
Xem chi tiết
Lê Trinh
Xem chi tiết
Lê Trinh
Xem chi tiết