4x^2+4x-81y^2+1
4x^2+4x-81y^2+1
\(4x^2+4x-81y^2+1=\left(4x^2+4x+1\right)-81y^2\)
\(=\left(2x+1\right)^2-81y^2=\left(2x+9y+1\right)\left(2x-9y+1\right)\)
Phân tích thành nhân tử
a/ 4x^2 + 4x +1
b/ x^2 - 25x + 10
c/ 81y^4 - 16x^6
d/ 4x^2 + y^2 + z^2 + 4xy + 2yz + 4xz
a/ 4x^2 + 4x +1=(2x)2+2.2x.1+12=(2x+1)2=(2x+1)(2x+1)
c/ 81y^4 - 16x^6=(9y2)2-(4x3)2=(9y2+4x3)(9y2-4x3)
d/ 4x^2 + y^2 + z^2 + 4xy + 2yz + 4xz=[(2x)2+4xy+y2]+(4xz+2yz)+z2
=(2x+y)2+2z(2x+y)+z2
=(2x+y+z)2
=(2x+y+z)(2x+y+z)
Phân tích đa thức thành nhân tử
1)4x^2+2x-36x-9y+81y^2
2)x^4-5x^2+4
2) \(x^4-5x^2+4\)
\(=x^4-x^2-4x^2+4\)
\(=x^2\left(x^2-1\right)-4\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-4\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\)
Bài 1.khai triển HĐT
a,(3x-4)^2 b,(1+4x)^2 c,(2x+3)^3
d,(5-2x)^3 e,49x^2-25 f,1/25-81y^2
Bài 2.Tìm x biết:Viết đầy đủ
a,(x-5)^2-(x+7)(x-7)=8 b,(2x+5)^2-4(x+1)(x-1)=10
Bài 3.Tìm GTLN,GTNN của các biểu thức sau
a,A=x^2-6x+19 b,B=-x^2+8x-20
c,C=4x^2+12x+100 d,D=25+4x-x^2
Bài 1.
\(a, (3x-4)^2\)
\(=\left(3x\right)^2-2\cdot3x\cdot4+4^2\)
\(=9x^2-24x+16\)
\(b,\left(1+4x\right)^2\)
\(=1^2+2\cdot1\cdot4x+\left(4x\right)^2\)
\(=16x^2+8x+1\)
\(c,\left(2x+3\right)^3\)
\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot3+3\cdot2x\cdot3^2+3^3\)
\(=8x^3+36x^2+54x+27\)
\(d,\left(5-2x\right)^3\)
\(=5^3-3\cdot5^2\cdot2x+3\cdot5\cdot\left(2x\right)^2-\left(2x\right)^3\)
\(=125-150x+60x^2-8x^3\)
\(e,49x^2-25\)
\(=\left(7x\right)^2-5^2\)
\(=\left(7x-5\right)\left(7x+5\right)\)
\(f,\dfrac{1}{25}-81y^2\)
\(=\left(\dfrac{1}{5}\right)^2-\left(9y\right)^2\)
\(=\left(\dfrac{1}{5}-9y\right)\left(\dfrac{1}{5}+9y\right)\)
Bài 2.
\(a,\left(x-5\right)^2-\left(x+7\right)\left(x-7\right)=8\)
\(\Rightarrow x^2-2\cdot x\cdot5+5^2-\left(x^2-7^2\right)=8\)
\(\Rightarrow x^2-10x+25-\left(x^2-49\right)=8\)
\(\Rightarrow x^2-10x+25-x^2+49=8\)
\(\Rightarrow\left(x^2-x^2\right)-10x=8-25-49\)
\(\Rightarrow-10x=-66\)
\(\Rightarrow x=\dfrac{33}{5}\)
\(b,\left(2x+5\right)^2-4\left(x+1\right)\left(x-1\right)=10\)
\(\Rightarrow\left(2x\right)^2+2\cdot2x\cdot5+5^2-4\left(x^2-1^2\right)=10\)
\(\Rightarrow4x^2+20x+25-4x^2+4=10\)
\(\Rightarrow\left(4x^2-4x^2\right)+20x=10-25-4\)
\(\Rightarrow20x=-19\)
\(\Rightarrow x=\dfrac{-19}{20}\)
#\(Toru\)
Bài 1
a) (3x - 4)²
= (3x)² - 2.3x.4 + 4²
= 9x² - 24x + 16
b) (1 + 4x)²
= 1² + 2.1.4x + (4x)²
= 1 + 8x + 16x²
c) (2x + 3)³
= (2x)³ + 3.(2x)².3 + 3.2x.3² + 3³
= 8x³ + 36x² + 54x + 27
d) (5 - 2x)³
= 5³ - 3.5².2x + 3.5.(2x)² - (2x)³
= 125 - 150x + 60x² - 8x³
e) 49x² - 25
= (7x)² - 5²
= (7x - 5)(7x + 5)
f) 1/25 - 81y²
= (1/5)² - (9y)²
= (1/5 - 9y)(1/5 + 9y)
Bài 3.
\(a,A=x^2-6x+19\)
\(=x^2-6x+9+10\)
\(=\left(x^2-2\cdot x\cdot3+3^2\right)+10\)
\(=\left(x-3\right)^2+10\)
Ta thấy: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-3\right)^2+10\ge10\forall x\)
Dấu \("="\) xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy: \(Min_A=10\) khi \(x=3\)
\(b,B=-x^2+8x-20\)
\(=-x^2+8x-16-4\)
\(=-\left(x^2-8x+16\right)-4\)
\(=-\left(x^2-2\cdot x\cdot4+4^2\right)-4\)
\(=-\left(x-4\right)^2-4\)
Ta thấy: \(\left(x-4\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-4\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-4\right)^2-4\le-4\forall x\)
Dấu \("="\) xảy ra \(\Leftrightarrow x-4=0\Leftrightarrow x=4\)
Vậy \(Max_B=-4\) khi \(x=4\)
\(c,C=4x^2+12x+100\)
\(=4x^2+12x+9+91\)
\(=\left[\left(2x\right)^2+2\cdot2x\cdot3+3^2\right]+91\)
\(=\left(2x+3\right)^2+91\)
Ta thấy: \(\left(2x+3\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x+3\right)^2+91\ge91\forall x\)
Dấu \("="\) xảy ra \(\Leftrightarrow2x+3=0\Leftrightarrow x=-\dfrac{3}{2}\)
Vậy \(Min_C=91\) khi \(x=\dfrac{-3}{2}\)
\(d,D=25+4x-x^2\)
\(=-x^2+4x-4+29\)
\(=-\left(x^2-2\cdot x\cdot2+2^2\right)+29\)
\(=-\left(x-2\right)^2+29\)
Ta thấy: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-2\right)^2+29\le29\forall x\)
Dấu \("="\) xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy \(Max_D=29\) khi \(x=2\)
#\(Toru\)
Phân tích đa thức thành nhân tử :
1) 0.125x^3 - 0,008 y^3
2) 16x^2 - 19 - 8xy + y^2
3) 49x^2 - 81y^2 - 14x + 1
4) 4x^2 - 9xy + 6ab + y^2 - b^2
5) x^6 - y^6
Phân tích đa thức thành nhân tử :
1) 0.125x^3 - 0,008 y^3
2) 16x^2 - 19 - 8xy + y^2
3) 49x^2 - 81y^2 - 14x + 1 4) 4x^2 - 9xy + 6ab + y^2 - b^2
5) x^6 - y^6
Phân tích đa thức thành nhân tử :
1) 0.125x^3 - 0,008 y^3
2) 16x^2 - 49 - 8xy + y^2
3) 49x^2 - 81y^2 - 14x + 1
4) 4x^2 - 9x^2 + 4xy + 6ab + y^2 - b^2
5) x^6 - y^6
Phân tích đa thức thành nhân tử :
1) 0.125x^3 - 0,008 y^3
2) 16x^2 - 19 - 8xy + y^2
3) 49x^2 - 81y^2 - 14x + 1
4) 4x^2 - 9xy + 6ab + y^2 - b^2
5) x^6 - y^6
Phân tích đa thức thành nhân tử :
1) 0.125x^3 - 0,008 y^3
2) 16x^2 - 19 - 8xy + y^2
3) 49x^2 - 81y^2 - 14x + 1
4) 4x^2 - 9xy + 6ab + y^2 - b^2
5) x^6 - y^6