Tìm \(x\), biết: \(\dfrac{x^2+2015x}{2016}+x^2+\dfrac{x^2+2015x}{1008}+2015x+\dfrac{x^2+2015x}{672}=2022\)
cho x,y,z là các số dương. chứng minh rằng:
\(\dfrac{x^2}{y+2015z}+\dfrac{y^2}{z+2015x}+\dfrac{z^2}{x+2015y}\ge\dfrac{x+y+z}{2016}\)
P(x)=x^2016-2015 x^2015-2015x^2014-...-2015x^2-2015x=1.tính P(2016)
P(x) = x2016 - 2015x2015 - 2015x2014 - ... - 2015x2 - 2015x
<=> P(x) = x2016 - 2016x2015 + x2015 - 2016x2014 + x2014 - ... - 2016x2 + x2 - 2016x + x
<=> P(2016) = 20162016 - 2016.20162015 + 20162015 - 2016.20162014 + 20162014 -...- 2016.20162 + 20162 - 2016.2016 + 2016
<=> P(2016)=20162016 - 20162016 + 20162015 - 20162015 + 20162014 - ... - 20163 + 20162 - 20162 + 2016
<=> P(2016) = 2016
Vậy P(2016) = 2016
Ta có:
P(2016) = 20162016 - 2015 . 20162015 - 2015 . 20162014 -.....- 2015 . 20162 - 2015 . 2016 - 1
P(2016) = 20162016 - ( 2016 - 1 ) . 20162015 - ( 2016 -1 ) . 20162014 - ..... - ( 2016 - 1 ) . 20162 - ( 2016 - 1 ) . 2016 - 1
P(2016)= 20162016 - 20162016 + 20162015 - 20162015 + 20162014 - ..... - 20163 + 20162 - 20162 + 2016 - 1
P(2016) = 2016 - 1
P(2016) = 2015.
cái chỗ bằng 1 là cộng 1 đấy
tek tức là nó = 2017
đúng không
cho đa thức P(x)=x2016 -2015x2015 -2015x2014 - ..... -2015x2 -2015x +1.Tính P(2016)
cho A = x6 - 2015x5 - 2015x4 - 2015x3 - 2015x2 - 2015x - 2016
Chứng tỏ rằng với x=2016 là nghiệm của đa thức trên
Ta có x=2016 => x-1=2015
Thay vào ta được :
A=x^6 -(x-1)x^5 - (x-1)x^4 -(x-1)x^3 - (x-1)x^2 - (x-1)x -x
= x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-x=0
Thay x=2016 vào biểu thức trên ta được:
\(A=x^6-\left(x-1\right).x^5-\left(x-1\right).x^4-\cdot\left(x-1\right).x^3-\left(x-1\right).x^2-\left(x-1\right).x-x\)
\(=x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-x\)
\(=0\)
Vậy x=2016 là nghiệm của đa thức .
cho A(x) = \(2015x^{100}+2015x^{99}+2015x^{98}+...+2015x+2016\)
khi x=2016.tính A(x)
Tính M(x)=x^10--2015x^9-2015x^8-...-2015x-1 tại x=2016
Tính M(x)=x^10--2015x^9-2015x^8-...-2015x-1 tại x=2016
tìm x biết \(\dfrac{1}{2016}\):2015x=-\(\dfrac{1}{2015}\)
Tính giá trị biểu thức:
a. x^4-2223x^3+2223x^2-2223x+2223 tại x=2222
b.x^14-2015x^13+2015x^12-2015x^11+...+2015x^2-2015x+2015 tại x=2014
a=x4-2223x3+2223x2-2223x+2223
=x3(x-2223)+x(x-2223)+2222x2+2003(*)
thay x=2222,ta co:
(*)<=>-22223-2222+22223+2223=1
dung thi chon nha