Cho 4m + 2n chia hết cho 7. Chứng minh 5m - n chia hết cho 7
1 cho abc-deg chia hết cjo 7
a, chứng minh rằng abcdeg chia hết 7
2 a, chứng minh rằng ; Tích của ba số tự nhiên liên tiếp thì chia hết cho 3 và cho 2
b, chứng minh ; Tích của 4 số tự nhiên liên tiếp luôn chia hết cho 4
c, chứng minh (n+3).(n+4).(2n+7) chia hết cho 3
1) Chứng minh rằng nếu a chia hết cho m và b chia hết cho n thi a.b chia hết cho m.n
2)Chứng minh rằng nếu n chia hết cho 12(n khac 0) thì 1+3+5+7+.....+(2n-1) chia hết cho 144
Cho 5m+2n chia hết cho 3. CMR: 4m+2014n chia hết cho 3.
Giả sử 4m+2014n chia hết cho 3
Ta lập tổng: 5m+2n+4m+2014n=(5m+4m)+(2n+2014n)=9m+2016n chia hết cho 3
Mà 5m+2n chia hết cho 3 suy ra 4m+2014n chia hết cho 3 (ĐPCM)
Bài 4: Chứng minh rằng:
a) \(4^{10}+4^7\) chia hết cho 65
b) \(10^{10}-10^9-10^8\) chia hết cho 89
Bài 5. Tìm số tự nhiên n để:
a) 5n+4 chia hết cho n
b) n+6 chia hết cho n+2
c) 3n+1 chia hết cho n-2
d) 3n+9 chia hết cho 2n-1
Bài 6: chứng minh rằng:
\(\overline{abab}\) chia hết cho 101
\(\overline{abc-\overline{cba}}\) chia hết cho 9 và 11
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
Chứng minh rằng với mọi số n ; m thuộc z :
a) (4n+3)^2 - 25 chia hết cho 8
b) (2n+3)^2 - 9 chia hết cho 4
c) (n+7)^2 - (n-5)^2 chia hết cho 24
d) m^2n^2 + 3m^2 + mn^2 + 3m chia hết cho n^2 + 3
e) m^2n^2 - 7m^2 - mn^2 + 7m chia hết cho m-1 và n^2-7
f) n^4 + 2n^3 - n^2 -2n chia hết cho 24
a) Thay m = -1 và n = 2 ta có:
3m - 2n = 3(-1) -2.2 = -3 - 4 = -7
b) Thay m = -1 và n = 2 ta được
7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.
Chứng minh rằng với mọi số n ; m thuộc z :
a) (4n+3)^2 - 25 chia hết cho 8
b) (2n+3)^2 - 9 chia hết cho 4
c) (n+7)^2 - (n-5)^2 chia hết cho 24
d) m^2n^2 + 3m^2 + mn^2 + 3m chia hết cho n^2 + 3
e) m^2n^2 - 7m^2 - mn^2 + 7m chia hết cho m-1 và n^2-7
f) n^4 + 2n^3 - n^2 -2n chia hết cho 24
*Mong các bạn giải hết cho mình nha*
a/ (4n - 2)(4n + 8) = 2(2n - 1)4(n + 2)= 8(2n - 1)(n+2) cái này chia hết cho 8
b/ 2n(2n + 6) = 4n(n+3) chia hết cho 4
c/ (2n +2)12 = 24(n+1) chia hết cho 24
cho A =n(2n-3)-2n(n+2).Chứng minh A chia hết cho 7
\(A=n\left(2n-3\right)-2n\left(n+2\right)\)
\(A=n\left(2n-3-2n-4\right)\)
\(A=-7n\)
\(\Rightarrow A\text{ }⋮\text{ }7\)
n(2n-3)-2n(n+2)
=2n2-3n-2n2-4n
= - 7n
Mà -7n ⋮ 7 với mọi n
vậy n(2n-3)-2n(n+2) luôn chia hết cho 7 với mọi n
k mình nha
A=n(2n-3)-2n(n+2)
A=n(2n-3-2n-4)
A= -7n
=> A chia hết cho 7
Chúc bạn học tốt! k mik đi
a,Tìm n là STN sao cho n+1 là ước của 2n+7
b,Cho 5a+3b chia hết cho 7(a,b thuộc N).Chứng minh rằng 3a-b chia hết cho 7
a) Để n + 1 là ước của 2n + 7 thì :
2n + 7 ⋮ n + 1
2n + 2 + 5 ⋮ n + 1
2( n + 1 ) + 5 ⋮ n + 1
Vì 2( n +1 ) ⋮ n + 1
=> 5 ⋮ n + 1
=> n + 1 thuộc Ư(5) = { 1; 5; -1; -5 }
=> n thuộc { 0; 4; -2; -6 }
Vậy........
\(\text{n + 1 là ước của 2n + 7 nên }\left(2n+7\right)⋮\left(n+1\right)\)
\(\Rightarrow\left(2n+2+5\right)⋮\left(n+1\right)\)
\(\Rightarrow5⋮\left(n+1\right)\left[\text{vì }\left(2n+2\right)⋮\left(n+1\right)\right]\)
\(\Rightarrow n+1\inƯ\left(5\right)=\left\{1;5\right\}\)
\(\text{Trường hợp : }n+1=1\)
\(\Rightarrow n=1-1\)
\(\Rightarrow n=0\)
\(\text{Trường hợp : }n+1=5\)
\(\Rightarrow n=5-1\)
\(\Rightarrow n=4\)
\(\text{Vậy }n\in\left\{0;4\right\}\)
Chứng minh:
a, 2n+1 chia hết cho 16-3n
b, \(n^2+2n+7\) chia hết cho n+2
c, \(n^2+1\)chia hết cho n-1