công trừ phân thức
\(\frac{5x^2+y^2}{xy}-\frac{3x-2y}{xy}\)
công trừ phân thức
\(\frac{y}{xy-5x^2}-\frac{15y-25x}{y^2-25x^2}\)
\(\frac{y}{x\left(y-5x\right)}-\frac{15y-25x}{\left(y+5x\right)\cdot\left(y-5x\right)}\)
=\(\frac{y^2+5xy-15xy+25x^2}{x\left(y+5x\right)\left(y-5x\right)}\)
=\(\frac{y^2-10xy+25x^2}{x\left(y-5x\right)\left(y+5x\right)}=\frac{\left(y-5x\right)^2}{x\left(y-5x\right)\left(y+5x\right)}\)
=\(\frac{y-5x}{xy+5x^2}\)
Bài 2: Rút gọn phân thức
\(A=\frac{10x^2-7+5x-2xy}{1-2x^2+x}\)
Bài 3: Chứng minh rằng
a) \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}=\frac{xy+y^2}{2x-y}\)
b) \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}=\frac{1}{x-y}\)
Bài 4: Quy đồng mẫu thức các phân thức sau
a) \(\frac{5x}{\left(x+3\right)^3}\&\frac{x-4}{3x\left(x+2\right)^2}\)
b) \(\frac{x+1}{x-x^2}\&\frac{x+2}{2x^2+2-4x}\)
Ta có: \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)
\(=\frac{x^2y+xy^2+xy^2+y^3}{2x^2+2xy-xy-y^2}\)
\(=\frac{xy\left(x+y\right)+y^2\left(x+y\right)}{2x\left(x+y\right)-y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)\left(xy+y^2\right)}{\left(2x-y\right)\left(x+y\right)}=\frac{xy+y^2}{2x-y}\left(đpcm\right)\)
Ta có: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(=\frac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}\)
\(=\frac{x\left(x+y\right)+2y\left(x+y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)
\(=\frac{\left(x+2y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}\left(đpcm\right)\)
Tìm đa thức M , biết :
a) \(M-\left(\frac{1}{2}x^2y-5xy^2+x^3-y^3\right)=\frac{3}{4}xy^2-2x^2y+\)\(2y^3-\frac{1}{3}x^3\)
b)\(\left(-\frac{1}{3}x^3y^3+5x^2y^2-\frac{5}{2}xy\right)-M=xy-\frac{1}{6}x^3y^3-3x^2y^2\)
c)\(\left(\frac{2}{7}xy^4-5x^5+7x^2y^3-3\right)+M=0\)
\(\frac{5x^2-y^2}{xy}-\frac{3x-2y}{y}\)
\(\frac{5x^2-y^2}{xy}-\frac{3x-2y}{y}=\frac{5x^2-y^2}{xy}-\frac{3x^2-2xy}{xy}\)
\(=\frac{5x^2-y^2-3x^2+2xy}{xy}=\frac{2x^2+2xy-y^2}{xy}\)
\(\frac{5x^2-y^2}{xy}-\frac{3x-2y}{y}\left(Đk:x;y\ne0\right)\)
\(=\frac{5x^2-y^2}{xy}-\frac{3x^2-2xy}{xy}=\frac{5x^2-y^2-3x^2+2xy}{xy}\)
\(=\frac{2x^2+2xy-y^2}{xy}\)\(=\frac{x^2+\left(x+y\right)^2}{xy}\)
B=\(\frac{-1}{2}xy+3x^2+\left(-2xy\right)+9-5x^2-\frac{1}{2}xy\)
C= \(5x^3-4xy+\left(\frac{-1}{3}x^3\right)-5xy-7x^2y\)
D= \(^{x^2y}-3xy+3x^2y-xy-\frac{1}{2}xy^2\)
bài này mình giải đc rồi các bạn k cần giải nữa đâu
Trừ phân thức
\(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}\)
\(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}\)
\(=\frac{1}{x\left(y-x\right)}-\frac{1}{y\left(y-x\right)}\)
\(=\frac{y}{xy\left(y-x\right)}-\frac{x}{xy\left(y-x\right)}\)
\(=\frac{y-x}{xy\left(y-x\right)}=\frac{1}{xy}\)
cộng trừ các phân thức
\(\frac{2x+y}{2x^2-xy}+\frac{8y}{y^2-4x^2}+\frac{2x-y}{2x^2+xy}\)
\(\frac{2x+y}{2x^2-xy}+\frac{8y}{y^2-4x^2}+\frac{2x-y}{2x^2+xy}\)
\(=\frac{2x+y}{x\left(2x-y\right)}-\frac{8y}{\left(2x-y\right)\left(2x+y\right)}+\frac{2x-y}{x\left(2x+y\right)}\)
\(=\frac{\left(2x+y\right)^2-8xy+\left(2x-y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}=\frac{4x^2+4xy+y^2-8xy+4x^2-4xy+y^2}{x\left(2x-y\right)\left(2x+y\right)}\)
\(=\frac{8x^2-8xy+2y^2}{x\left(2x-y\right)\left(2x+y\right)}=\frac{2\left(4x^2-4xy+y^2\right)}{x\left(2x-y\right)\left(2x+y\right)}\)
\(=\frac{2\left(2x-y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}=\frac{2\left(2x-y\right)}{x\left(2x+y\right)}\)
\(a.\left(5x^4-3x^3+x^2\right):3x^2=\frac{5}{3}x^2-x+\frac{1}{3}\)
\(b.\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)=-5y-9+xy\)
\(c.\left(x^3y^3-x^2y^3-x^3y^2\right):x^2y^2=xy-y-x\)
a, mình nghĩ đề là cm đẳng thức nhé
\(VT=\left(5x^4-3x^3+x^2\right):3x^2=\frac{5x^4}{3x^2}-\frac{3x^3}{3x^2}+\frac{x^2}{3x^2}=\frac{5}{3}x^2-x+\frac{1}{3}=VP\)
Vậy ta có đpcm
b, \(VT=\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)=\frac{5xy^2}{-xy}+\frac{9xy}{-xy}-\frac{x^2y^2}{-xy}\)
\(=-5y-9+xy=VP\)
Vậy ta có đpcm
c, \(VT=\left(x^3y^3-x^2y^3-x^3y^2\right):x^2y^2=\frac{x^3y^3}{x^2y^2}-\frac{x^2y^3}{x^2y^2}-\frac{x^3y^2}{x^2y^2}=xy-y-x=VP\)
Vậy ta có đpcm
Phân tích mỗi đa thức sau thành nhân tử
a)x^3-2x^2y+xy^2+xy
b)x^3+4x^2y+4xy^2-9x
c)x^3-y^3+x-y
d)4x^2-4xy+2x-y+y^2
e)9x^2-3x+2y-4y^2
f)3x^2-6xy+3y^2-5x+5y
a) Xem lại đề
b) x³ - 4x²y + 4xy² - 9x
= x(x² - 4xy + 4y² - 9)
= x[(x² - 4xy + 4y² - 3²]
= x[(x - 2y)² - 3²]
= x(x - 2y - 3)(x - 2y + 3)
c) x³ - y³ + x - y
= (x³ - y³) + (x - y)
= (x - y)(x² + xy + y²) + (x - y)
= (x - y)(x² + xy + y² + 1)
d) 4x² - 4xy + 2x - y + y²
= (4x² - 4xy + y²) + (2x - y)
= (2x - y)² + (2x - y)
= (2x - y)(2x - y + 1)
e) 9x² - 3x + 2y - 4y²
= (9x² - 4y²) - (3x - 2y)
= (3x - 2y)(3x + 2y) - (3x - 2y)
= (3x - 2y)(3x + 2y - 1)
f) 3x² - 6xy + 3y² - 5x + 5y
= (3x² - 6xy + 3y²) - (5x - 5y)
= 3(x² - 2xy + y²) - 5(x - y)
= 3(x - y)² - 5(x - y)
= (x - y)[(3(x - y) - 5]
= (x - y)(3x - 3y - 5)