Phân tích đa thức thành nhân tử :
a, x^3 + 9x^2 - 6x - 16
b, x^3 - x^2 + x - 2
Phân tích đa thức thành nhân tử
27x^3+27x^2+9x+1
-x^3-3x^2-3x-1
- 8+12x-6x^2+x^3
a) \(27x^3+27x^2+9x+1=\left(3x+1\right)^3\)
b) \(-x^3-3x^2-3x-1=-\left(x^3+3x^2+3x+1\right)=-\left(x+1\right)^3\)
c) \(-8+12x-6x^2+x^3=\left(x-2\right)^3\)
phân tích đa thức thành nhân tử bằng phương pháp tách hạng tử
a 4x^3 - 13 x^2 + 9x - 18
b - x^3 - 6x^2 + 6x +1
c x^3 - 4x^2 - 8x + 8
a. \(=4x^3-12x^2-x^2+3x+6x-18=\left(x-3\right)\left(4x^2-x+6\right)\)
b. \(=-x^3+x^2-7x^2+7x-x+1=\left(x-1\right)\left(-x^2-7x-1\right)\)
c. \(=x^3+2x^2-6x^2-12x+4x+8=\left(x+2\right)\left(x^2-6x+4\right)\)
Phân tích đa thức thành nhân tử
X^3 -6x^2+9x-2
\(\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(x-2\right).\)
\(x^2\left(x-2\right)-4x\left(x-2\right)+\left(x-2\right)\)
vậy................
\(\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(x-2\right)\)
\(x^2\left(x-2\right)-4x\left(x-2\right)+\left(x-2\right)\)
Vậy ........
phân tích đa thức thành nhân tử
1/ \(6x^2y-9xy^2+3xy\)
2/ \(\left(4-x\right)^2-16\)
3/ \(x^3+9x^2-4x-36\)
1: \(6x^2y-9xy^2+3xy\)
\(=3xy\left(2x-3y+1\right)\)
2: \(\left(4-x\right)^2-16\)
\(=\left(4-x-4\right)\left(4-x+4\right)\)
\(=-x\cdot\left(8-x\right)\)
3: \(x^3+9x^2-4x-36\)
\(=x^2\left(x+9\right)-4\left(x+9\right)\)
\(=\left(x+9\right)\left(x-2\right)\left(x+2\right)\)
1) \(6x^2y-9xy^2+3xy=3xy\left(2x-3y+1\right)\)
2) \(\left(4-x\right)^2-16=\left(4-x\right)^2-4^2=\left(4-x-4\right)\left(4-x+4\right)=-x\left(8-x\right)\)
3) \(x^3+9x^2-4x-36\\ =\left(x^3-2x^2\right)+\left(11x^2-22x\right)+\left(18x-36\right)\\ =x^2\left(x-2\right)+11x\left(x-2\right)+18\left(x-2\right)\\ =\left(x^2+11x+18\right)\left(x-2\right)\\ =\left[\left(x^2+2x\right)+\left(9x+18\right)\right]\left(x-2\right)\\ =\left[x\left(x+2\right)+9\left(x+2\right)\right]\left(x-2\right)\\ =\left(x+2\right)\left(x+9\right)\left(x-2\right)\)
Phân tích đa thức thành nhân tử: 1, x^3+2x^2-6x-27 2, 9x^2+6x-4y^2-4y 3, 12x^3+4x^2-27x-9
1. \(x^3+2x^2-6x-27=\left(x-3\right)\left(x^2+5x+9\right)\)
2. \(9x^2+6x-4y^2-4y=\left(9x^2-4y^2\right)+\left(6x-4y\right)\)
\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)=\left(3x-2y\right)\left(3x+2y+2\right)\)
3. \(12x^3+4x^2-27x-9=4x^2\left(3x+1\right)-9\left(3x+1\right)\)
\(=\left(3x+1\right)\left(x^2-\dfrac{9}{4}\right)=\left(x+\dfrac{1}{3}\right)\left(x+\dfrac{3}{2}\right)\left(x-\dfrac{3}{2}\right)\)
1) Ta có: \(x^3+2x^2-6x-27\)
\(=\left(x-3\right)\left(x^2+3x+9\right)+2x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+5x+9\right)\)
2: Ta có: \(9x^2+6x-4y^2-4y\)
\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)\)
\(=\left(3x-2y\right)\left(3x+2y+2\right)\)
Bài tập : Phân tích đa thức thành nhân tử
a, x^3-7x+6
b, x^3-9x^2+6x+16
c, x^3-6x^2-x+30
d, 2x^3-x^2+5x+3
a) x3 - 7x + 6
= x3 - 2x2 + 2x2 - 4x - 3x + 6
= x2 ( x - 2 ) + 2x ( x - 2 ) - 3 ( x - 2 )
= ( x - 2 ) ( x2 + 2x - 3 )
= ( x - 2 ) ( x2 - x + 3x - 3 )
= ( x - 2 ) [ x ( x - 1 ) + 3 ( x - 1 ) ]
= ( x - 2 ) ( x - 1 ) ( x + 3 )
b ) x3 - 9x2 + 6x + 16
= x3 - 8x2 - x2 + 8x - 2x + 16
= x2 ( x - 8 ) - x ( x - 8 ) - 2 ( x - 8 )
= ( x - 8 ) ( x2 - x - 2 )
= ( x - 8 ) ( x2 + x - 2x - 2 )
= ( x - 8 ) [ x ( x + 1 ) - 2 ( x + 1 ) ]
= ( x - 8 ) ( x + 1 ) ( x - 2 )
c ) x3 - 6x2 - x + 30
= x3 - 5x2 - x2 + 5x - 6x + 30
= x2 ( x - 5 ) - x ( x - 5 ) - 6 ( x - 5 )
= ( x - 5 ) ( x2 - x - 6 )
= ( x - 5 ) ( x2 - 3x + 2x - 6 )
= ( x - 5 ) [ x ( x - 3 ) + 2 ( x - 3 ) ]
= ( x - 5 ) ( x - 3 ) ( x + 2 )
d ) 2x3 - x2 + 5x + 3
= 2x3 + x2 - 2x2 - x + 6x + 3
= x2 ( 2x + 1 ) - x ( 2x + 1 ) + 3 ( 2x + 1 )
= ( 2x + 1 ) ( x2 - x + 3 )
Phân tích các đa thức sau thành nhân tử : a,x^3+5x^2+8x+4 b, x^3-9x^2+6x+16 .
a) \(x^3+5x^2+8x+4=x^3+x^2+4x^2+4x+4x+4\)
\(=x^2\left(x+1\right)+4x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+4x+4\right)=\left(x+1\right)\left(x+2\right)^2\)
b) \(x^3-9x^2+6x+16=x^3-8x^2-x^2+8x-2x+16\)
\(=x^2\left(x-8\right)-x\left(x-8\right)-2\left(x-8\right)\)
\(=\left(x-8\right)\left(x^2-x-2\right)=\left(x-8\right)\left(x-2\right)\left(x+1\right)\)
phân tích đa thức thành nhân tử bằng phương pháp tách hạng tử
x^3 - 5x^2 + 8x - 4
x^3 - 9x^2 + 6x +16
a, = (x^3-x^2)-(4x^2-4x)+(4x-4)
= (x-1).(x^2-4x+4) = (x-1).(x-2)^2
b, = (x^3+x^2)-(10x^2+10x)+(16x+16)
= (x+1).(x^2-10x+16)
= (x+1).[ (x^2-2x)-(8x-16) ] = (x+1).(x-2).(x-8)
k mk nha
a)= (x^3-x^2)-(4x^2-4x)+(4x-4)
= (x-1).(x^2-4x+4)
= (x-1).(x-2)^2
b)= (x^3+x^2)-(10x^2+10x)+(16x+16)
= (x+1).(x^2-10x+16)
= (x+1).[ (x^2-2x)-(8x-16) ]
= (x+1).(x-2).(x-8)
P/s tham khảo nha
phân tích đa thức thành nhân tử
5x^2+10xy+5y^2
x^3-6x^2+9x
xy+y^2-x-y
5x^2+10xy+5y^2
=5.(x2+2xy+y2)
=5.(x+y)2
x^3-6x^2+9x
=x.(x2-6x+9)
=x.(x-3)2
xy+y^2-x-y
=y.(x+y)-(x+y)
=(x+y)(y-1)