Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pox Pox
Xem chi tiết
Minh Nguyen
Xem chi tiết
Kiều Chinh
Xem chi tiết
Lưu Đức Mạnh
29 tháng 7 2017 lúc 13:42

a) \(A=\left[\frac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\right]:\left[\frac{1}{x+1}+\frac{x}{x-1}+\frac{2}{\left(x-1\right)\left(x+1\right)}\right]\)

\(A=\left[\frac{\left(x+1-x+1\right)\left(x-1+x-1\right)}{\left(x-1\right)\left(x+1\right)}\right]:\left[\frac{x-1}{\left(x-1\right)\left(x+1\right)}+\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{2}{\left(x-1\right)\left(x+1\right)}\right]\)

\(A=\left[\frac{4x}{\left(x-1\right)\left(x+1\right)}\right]:\left[\frac{x-1+x^2+x+2}{\left(x-1\right)\left(x+1\right)}\right]\)

\(A=\left[\frac{4x}{\left(x-1\right)\left(x+1\right)}\right]:\left[\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\right]\)

\(A=\left[\frac{4x}{\left(x-1\right)\left(x+1\right)}\right]:\left[\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\right]\)

\(A=\left[\frac{4x}{\left(x-1\right)\left(x+1\right)}\right]:\left(\frac{x+1}{x-1}\right)\)

\(A=\frac{4x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-1}{x+1}\)

\(A=\frac{4x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+1\right)}\)

\(A=\frac{4x}{2\left(x+1\right)}\)

\(A=\frac{2x}{x+1}\)

b) Thay A = -3 vào biểu thức a ta được:

\(\frac{2x}{x+1}=-3\)

\(\Rightarrow\)\(2x=-3\left(x+1\right)\)

\(\Rightarrow\)\(2x=-3x-3\)

\(\Rightarrow\)\(2x+3x=-3\)

\(\Rightarrow\)\(5x=-3\)

\(\Rightarrow\)\(x=-\frac{3}{5}\)

Vậy khi \(x=-\frac{3}{5}\)thì biểu thức A có giá trị là -3

Huỳnh Diệu Linh
Xem chi tiết
Nguyễn Ngọc Tú Uyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 0:08

a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)

b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)

\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)

c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)

\(=\dfrac{3}{\sqrt{x}-2}\)

Huỳnh Xuân Mai
Xem chi tiết
hoàng thị hoa
Xem chi tiết
Hoàng Thanh Tuấn
31 tháng 5 2017 lúc 21:30

Câu 1:

\(A=\frac{x\left(1-x^2\right)}{1+x^2}:\left[\left(\frac{\left(1-x\right)\left(x^2+x+1\right)}{1-x}+x\right)\left(\frac{\left(1+x\right)\left(x^2-x+1\right)}{1+x}+x\right)\right]\)

\(=\frac{x\left(1-x^2\right)}{x^2+1}:\left[\left(x^2+2x+1\right)\left(x^2-2x+1\right)\right]\)

\(=\frac{x\left(1-x^2\right)}{\left(1+x^2\right)\left(1+x\right)^2\left(x-1\right)^2}=\frac{x}{\left(1+x^2\right)\left(x^2-1\right)}=\frac{x}{x^4-1}\)

Câu 2: thay x vào A có :

\(A=\frac{-\frac{1}{2}}{\frac{1}{4}-1}=\frac{2}{3}\)

Câu c :

2A=1 => \(\frac{x}{x^4-1}=\frac{1}{2}\)ĐK \(\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)

\(\Leftrightarrow x^4-2x-1=0\Leftrightarrow\left(x+1\right)\left(x^3-x^2+x-1\right)=0\)

\(\left(x+1\right)\left(x^2+1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)loại do điều kiện  vậy ko có giá trị nào của x thỏa mãn

your heart your love is...
Xem chi tiết
Dương Chí Thắng
Xem chi tiết
Nguyễn Phan Thục Trinh
Xem chi tiết
Nguyễn Minh Quang
9 tháng 2 2021 lúc 20:39

Ta có \(A=[\frac{2}{\left(x+1\right)^3}\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}\left(\frac{1}{x^2}+1\right)]:\frac{x-1}{x^3}\)

\(\Leftrightarrow A=\left[\frac{2}{\left(x+1\right)^3}.\frac{x+1}{x}+\frac{1}{\left(x+1\right)^2}.\frac{x^2+1}{x^2}\right].\frac{x^3}{x-1}\)

\(\Leftrightarrow A=\left[\frac{2x+x^2+1}{x^2\left(x+1\right)^2}\right].\frac{x^3}{x+1}=\frac{x}{x+1}\)

Để \(A=\frac{x}{x+1}< 1\Leftrightarrow\frac{1}{x+1}>0\Leftrightarrow x>-1\)

Để \(A=1-\frac{1}{x+1}\text{ nguyên thì }\frac{1}{x+1}\text{ nguyên hay }x\in\left\{-2,0\right\} \)

Khách vãng lai đã xóa