Tìm a, b để \(\frac{a}{x}+\frac{b}{1-x}=\frac{1}{x\left(1-x\right)}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm các số A , B , C để có
a) \(\frac{x^2-x+2}{\left(x-1\right)^3}=\frac{A}{\left(x-1\right)^3}+\frac{B}{\left(x-1\right)^2}+\frac{C}{x-1}\)
b) \(\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}=\frac{A}{x-1}+\frac{Bx+C}{x^2+1}\)
Tìm các sô A; B; C để có :
a) \(\frac{x^2-x+2}{\left(x-1\right)^3}=\frac{A}{\left(x-1\right)^3}+\frac{B}{\left(x-1\right)^2}+\frac{C}{x-1}\)
b) \(\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}=\frac{A}{x-1}+\frac{Bx+C}{x^2+1}\)
cho B= \(\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{1}{x+1}-\frac{x}{1-x}+\frac{2}{x^2-1}\right)\)
a) Rút gọn A
b) Tìm giá trị của x để A = -3
a) \(A=\left[\frac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\right]:\left[\frac{1}{x+1}+\frac{x}{x-1}+\frac{2}{\left(x-1\right)\left(x+1\right)}\right]\)
\(A=\left[\frac{\left(x+1-x+1\right)\left(x-1+x-1\right)}{\left(x-1\right)\left(x+1\right)}\right]:\left[\frac{x-1}{\left(x-1\right)\left(x+1\right)}+\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{2}{\left(x-1\right)\left(x+1\right)}\right]\)
\(A=\left[\frac{4x}{\left(x-1\right)\left(x+1\right)}\right]:\left[\frac{x-1+x^2+x+2}{\left(x-1\right)\left(x+1\right)}\right]\)
\(A=\left[\frac{4x}{\left(x-1\right)\left(x+1\right)}\right]:\left[\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\right]\)
\(A=\left[\frac{4x}{\left(x-1\right)\left(x+1\right)}\right]:\left[\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\right]\)
\(A=\left[\frac{4x}{\left(x-1\right)\left(x+1\right)}\right]:\left(\frac{x+1}{x-1}\right)\)
\(A=\frac{4x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-1}{x+1}\)
\(A=\frac{4x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+1\right)}\)
\(A=\frac{4x}{2\left(x+1\right)}\)
\(A=\frac{2x}{x+1}\)
b) Thay A = -3 vào biểu thức a ta được:
\(\frac{2x}{x+1}=-3\)
\(\Rightarrow\)\(2x=-3\left(x+1\right)\)
\(\Rightarrow\)\(2x=-3x-3\)
\(\Rightarrow\)\(2x+3x=-3\)
\(\Rightarrow\)\(5x=-3\)
\(\Rightarrow\)\(x=-\frac{3}{5}\)
Vậy khi \(x=-\frac{3}{5}\)thì biểu thức A có giá trị là -3
1. A= \(\left(\sqrt{x}-\frac{x+2}{\sqrt{x}-1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right)\)
a. Rút gọn A
b. Tìm x để A<0
c. Tìm giá trị nhỏ nhất A.
2. M=\(\left(\frac{2x+1}{\sqrt{x^3}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1+\frac{x+4}{x+\sqrt{x}+1}\right)\)
a. Rút gọn M
b. Tìm số nguyên x để M có giá trị nguyên
3. N=\(\left(\frac{\sqrt{a}+\sqrt{b}}{1-\sqrt{a.b}}+\frac{\sqrt{a}-\sqrt{b}}{1+\sqrt{a.b}}\right):\left(1+\frac{a+b+2ab}{1-ab}\right)\)
a. Rút gọn N
b. Tính N khi a=\(\frac{2}{2-\sqrt{3}}\)
c. Tìm số nguyên a để N có giá trị nguyên
Gíup mình với. Cảm ơn nhiều ạ.
Tìm ĐKXĐ và rút gọn biểu thức
\(A=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)
\(B=\left(\frac{2\sqrt{x}-x}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\frac{x-1}{x+\sqrt{x}+1}\)
\(C=\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\)
\(D=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
CM rằng GT của bthức A ko phụ thuộc vào a
Tìm x để C = 4
Tìm x sao cho D < -1
a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)
b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)
\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)
c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)
\(=\dfrac{3}{\sqrt{x}-2}\)
\(A=\frac{x\left(1-x^2\right)^2}{1+x^2}:\left[\left(\frac{1-x^3}{1-x}+x\right)\left(\frac{1+x^3}{1+x}-x\right)\right]\)
a) Rút gọn A
b) Tìm A khi \(x=-\frac{1}{2}\)
c) Tìm x để 2A=1
cho A=\(\frac{x\left(1-x^2\right)}{1+x^2}:\left[\left(\frac{1-x^3}{1-x}+x\right)\left(\frac{1+x^3}{1+x}-x\right)\right]\)
a) rút gọn A
b) tìm A khi x = \(-\frac{1}{2}\)
c) tìm x để 2A = 1
Câu 1:
\(A=\frac{x\left(1-x^2\right)}{1+x^2}:\left[\left(\frac{\left(1-x\right)\left(x^2+x+1\right)}{1-x}+x\right)\left(\frac{\left(1+x\right)\left(x^2-x+1\right)}{1+x}+x\right)\right]\)
\(=\frac{x\left(1-x^2\right)}{x^2+1}:\left[\left(x^2+2x+1\right)\left(x^2-2x+1\right)\right]\)
\(=\frac{x\left(1-x^2\right)}{\left(1+x^2\right)\left(1+x\right)^2\left(x-1\right)^2}=\frac{x}{\left(1+x^2\right)\left(x^2-1\right)}=\frac{x}{x^4-1}\)
Câu 2: thay x vào A có :
\(A=\frac{-\frac{1}{2}}{\frac{1}{4}-1}=\frac{2}{3}\)
Câu c :
2A=1 => \(\frac{x}{x^4-1}=\frac{1}{2}\)ĐK \(\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)
\(\Leftrightarrow x^4-2x-1=0\Leftrightarrow\left(x+1\right)\left(x^3-x^2+x-1\right)=0\)
\(\left(x+1\right)\left(x^2+1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)loại do điều kiện vậy ko có giá trị nào của x thỏa mãn
\(ChoQ=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\left(\frac{1-x}{\sqrt{2}}\right)^2\)
a, rút gọn
b, chứng minh nếu 0<x<1 thì Q>0
c, tìm GTLN của Q
\(ChoA=\frac{1}{2\left(1+\sqrt{x}+2\right)}+\frac{1}{2\left(1-\sqrt{x}+2\right)}\)
a, tìm x để a có nghĩa
b, rút gon A
c, tìm X nguyên để A nguyên
\(ChoA=\left(\frac{\sqrt{a}}{\sqrt{a-1}}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2}{a-1}\right)\)
a, Rút gọn A
b, tính A Khi a=3+\(2\sqrt{2}\)
Cho biểu thức: \(A=\left[\frac{4}{\left(x+2\right)^3}\left(\frac{2}{x}+1\right)+\frac{1}{x^2+4x+4}\left(\frac{4}{x^2}+1\right)\right]:\frac{x^2+1}{x^3-x^2}\)
a) Rút gọn A
b) Tìm giá trị của x để A > 0
c) Tìm giá trị nguyên của x để A nguyên
Cho biểu thức :\(A=[\frac{2}{\left(x+1\right)^3}\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}\left(\frac{1}{x^2}+1\right)]:\frac{x-1}{x^3}\)
a/ Thu gọn A
b/ Tìm các giá trị của x để A<1
c) Tìm các giá trị nguyên của x để A có giá trị nguyên
Ta có \(A=[\frac{2}{\left(x+1\right)^3}\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}\left(\frac{1}{x^2}+1\right)]:\frac{x-1}{x^3}\)
\(\Leftrightarrow A=\left[\frac{2}{\left(x+1\right)^3}.\frac{x+1}{x}+\frac{1}{\left(x+1\right)^2}.\frac{x^2+1}{x^2}\right].\frac{x^3}{x-1}\)
\(\Leftrightarrow A=\left[\frac{2x+x^2+1}{x^2\left(x+1\right)^2}\right].\frac{x^3}{x+1}=\frac{x}{x+1}\)
Để \(A=\frac{x}{x+1}< 1\Leftrightarrow\frac{1}{x+1}>0\Leftrightarrow x>-1\)
Để \(A=1-\frac{1}{x+1}\text{ nguyên thì }\frac{1}{x+1}\text{ nguyên hay }x\in\left\{-2,0\right\} \)