2x16 = 9n2 (n ϵ N*; x ≤ 9)
Tìm x
Tìm các giới hạn sau: l i m 9 n 2 - n + 1 4 n - 2
tim chu so n de so 9n2 chia het cho 17
tìm chữ số n để số 9n2 chia hết cho 17
=> 9n - 2 x 5 chia hết cho 17
9n - 10 chia hết cho 17
=> 9n - 10 = 85
=> n = 5
Tìm tất cả các số tự nhiên n thỏa mãn 9n2+3n+4 là số chính phương
Hôm nay olm.vn sẽ hướng dẫn các em cách giải phương trình nghiệm nguyên bằng nguyên lí kẹp. Cấu trúc đề thi hsg, thi chuyên thi violympic.
(3n + 1)2 = 9n2 + 2n + 1 < 9n2 + 3n + 4 \(\forall\) n \(\in\) N (1)
(3n + 2)2 = (3n + 2).(3n +2) = 9n2 + 12n + 4
⇒(3n + 2)2 ≥ 9n2 + 3n + 4 \(\forall\) n \(\in\) N (2)
Kết hợp (1) và (2) ta có: (3n +1)2 < 9n2 + 3n + 4 ≤ (3n + 2)2
Vì (3n + 1)2 và (3n +2)2 là hai số chính phương liên tiếp nên
9n2 + 3n + 4 là số chính phương khi và chỉ khi:
9n2 + 3n + 4 = (3n + 2)2 ⇒ 9n2 + 3n + 4 = 9n2 + 12n + 4
9n2 + 12n + 4 - 9n2 - 3n - 4 = 9n = 0 ⇒ n = 0
Vậy với n = 0 thì 9n2 + 3n + 4 là số chính phương.
dang tong quat cua so tu nhien chia het cho 3 la
a,3k (k ϵ n) b,5k + 3 (k ϵ n)
c,3k +1 (k ϵ n) d,3k+2(k ϵ n)
Số hạng chia hết cho a có dạng x = a.k (k ∈ N)
Do đó số hạng chia hết cho 3 có dạng x = 3k (k ∈ N)
gọi S là tổng các số nguyên n để 2n + 3/4n + 1 là phân số tối giản :
A, n ≠ 5k + 1 với k ϵ N B, n = 5k + 1 với k ϵ N
C , n ≠ 5k - 1 với k ϵ N C, n = 5k - 1 với k ϵ N
1.Tìm n,biết:
a)2x16>2n>4
b)9x27<3n<243
2.so sánh 2225và3150
a)
\(2.16\ge2^n>4\)
\(\Rightarrow32\ge2^n>2^2\)
\(\Rightarrow2^5\ge2^n>2^2\)
\(\Rightarrow n\in\left\{3;4;5\right\}\)
b)
\(9.27\le3^n\le243\)
\(\Rightarrow3^2.3^3\le3^n\le3^5\)
\(\Rightarrow3^5\le3^n\le3^5\)
\(\Rightarrow n=5\)
Tìm chữ số n để \(\overline{9n2}\) chia hết cho 17
ta có
9n2=900+10n+2=902+10n=901+10n+1
vì 901 \(⋮\)17 =>10n+1 \(⋮\)17 =>n =...
Cho A= 8:(n-2) tìm n ϵ N để A ϵ N
A ∈ N => 8 : (n - 2) ∈ N => (n - 2) ∈ Ư(8) = {1; 2; 4; 8}; (n - 2) > 0
=> ta có bảng:
n - 2 | 1 | 2 | 4 | 8 |
n | 3 | 4 | 6 | 10 |
Vậy n ∈ {3; 4; 6; 10}
Vì AϵN nên 8 : (n-2 ) ϵ N
=> n-2 ϵ Ư(8) ϵ{1 ; 2 ; 4; 8 } ; ( n-2 ) > 0
xét các th
n-2 | 2 | 8 | 4 | 1 |
n | 4 | 10 | 6 | 3 |