cho x và y thỏa mãn (1/3-2x)^2018 + (3y-x)^2020 < 0 .chứng tỏ 1/x+1/y=24
Cho x,y thỏa mãn:
\(\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\) nhỏ hơn hoặc bằng 0
CMR: \(\frac{1}{x}+\frac{1}{y}=24\)
\(\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\le0\)(1)
Vì \(\left(\frac{1}{3}-2x\right)^{2018}\ge0\forall x\); \(\left(3y-x\right)^{2020}\ge0\forall x,y\)
\(\Rightarrow\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\ge0\forall x,y\)(2)
Từ (1), (2) \(\Rightarrow\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{3}-2x=0\\3y-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{6}\\y=\frac{1}{18}\end{cases}}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=6+18=24\left(đpcm\right)\)
cho x,y thỏa mãn \(\left(\dfrac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\le0\)
Chứng tỏ:\(\dfrac{1}{x}+\dfrac{1}{y}=24\)
Help Mn ơi lm giúp mk vs chiều nộp rồi
Ta có: \(\left(\dfrac{1}{3}-2x\right)^{2018}\ge0\forall x\);
\(\left(3y-x\right)^{2020}\ge0\forall x;y\)
=> \(\left(\dfrac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\ge0\)
mà theo đề thì:\(\left(\dfrac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\le0\)
=> Dấu ''='' xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\dfrac{1}{3}-2x=0\\3y-x=0\end{matrix}\right.\)
Ta có: \(\dfrac{1}{3}-2x=0\Rightarrow x=\dfrac{1}{6}\);
\(3y-x=0\Leftrightarrow3y-\dfrac{1}{6}=0\Leftrightarrow3y=\dfrac{1}{6}\Leftrightarrow y=\dfrac{1}{18}\)
=> \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{\dfrac{1}{6}}+\dfrac{1}{\dfrac{1}{18}}=6+18=24\left(đpcm\right)\)
Cho x, y ,z, là các số tự nhiên thỏa mãn 2x + 3y - 5z + 19 = 0 và x-1/2=y+3/3=z-1/4 . Hãy tìm số dư khi chia x^2018+y^2018+z^2018 cho 4
Ko biết Anh gì ơi
Cho các số x,y thuộc tập n thỏa mãn (x + y - 3)^ 2018 + 2018x (2x - 4)^2020 = 0
Tính giá trị của biểu thức S = (x -1)^2019 +( 2 - y)^2019 = 2018
Nhận xét : ( x + y - 3 )^2018 >=0 và 2018.(2x-4)^2020 >= 0
=> (x+y-3)^2018 + 2018.(2x-4)^2020 >=0
Dấu = xảy ra khi : x + y - 3 = 0 và 2x - 4 = 0 => x = 2 và y = 1
Thay vào bt S :
S = ( 2 - 1)^2019 + (2-1)^2019
= 1^2019 + 1^2019 = 2
cho 3 số thực dương x,y,z thỏa mãn : x^2+y^3+z=1.Chứng minh rằng x^2018+y^2019+z^2020<1
Cho các số x, y thoả mãn đẳng thức \(5x^2+5y^2+8xy-2x+2y+2=0\)
Chứng minh rằng \(\left(x+y\right)^{2018}+\left(x-2\right)^{2019}+\left(y+1\right)^{2020}=-1\)
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Vì \(\left(x+y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+1\right)^2\ge0\)
\(\Rightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(\left(x+y\right)^{2018}+\left(x-2\right)^{2019}+\left(y+1\right)^{2020}=\left(1-1\right)^{2018}+\left(1-2\right)^{2019}+\left(-1+1\right)^{2020}=-1\)
Tìm đa thức M biết rằng:M+(5x^2-2xy)=6x^2+9xy-y^2.Tính giá trị của M khi x,y thỏa mãn (2x-5)^2018+(3y+4)^2020 <hoặc=0
\(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\\ \Leftrightarrow\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}=0\\ \Leftrightarrow\left\{{}\begin{matrix}\left(2x-5\right)^{2018}=0\\\left(3y+4\right)^{2020}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=-\dfrac{4}{3}\end{matrix}\right.\\ \Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2\\ \Leftrightarrow M=\dfrac{25}{4}-11\cdot\dfrac{4}{3}\cdot\dfrac{5}{2}-\dfrac{16}{9}=\dfrac{25}{4}-\dfrac{110}{3}-\dfrac{16}{9}=-\dfrac{1159}{36}\)
cho 3 số x,y,z thỏa mãn x+y+z=1/x+1/y+1/z. tính q=(x^2018 - 1).[(-y)^2019 + 1].(z^2020 - 1)
cho `x,y,z` khác `0` thỏa mãn `x + y/2 + z/3 = 1` và `1/x + 2/y + 3/z =0`. Chứng tỏ `A= x^2 + (y^2)/4 + (z^2)/9 =1`
\(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=0\)
=>\(\dfrac{yz+2xz+3xy}{xyz}=0\)
=>yz+2xz+3xy=0
=>\(xy+\dfrac{2}{3}xz+\dfrac{1}{3}yz=0\)
\(x+\dfrac{y}{2}+\dfrac{z}{3}=1\)
=>\(\left(x+\dfrac{y}{2}+\dfrac{z}{3}\right)^2=1\)
=>\(x^2+\dfrac{y^2}{4}+\dfrac{z^2}{9}+2\left(x\cdot\dfrac{y}{2}+x\cdot\dfrac{z}{3}+\dfrac{y}{2}\cdot\dfrac{z}{3}\right)=1\)
=>\(A+2\left(\dfrac{xy}{2}+\dfrac{xz}{3}+\dfrac{yz}{6}\right)=1\)
=>A+xy+2/3xz+1/3yz=1
=>A=1