Chứng minh rằng: x^2+3x+1 và x+2 là hai số nguyên tố cùng nhau với x thuộc N
Chứng minh rằng với mọi x thuộc N* thì 3x+1 và 4x+1 là 2 số nguyên tố cùng nhau
gọi ước chung lớn nhất của 3x+1 và 4x+1 là d =>3x+1 chia hết d ;4x+1 chia hết d=> 4 X [3x+1] chia hết d;3 X [4x+1] chia hết d => 12x+4 chia hết d;12x+3 chia hết d=>[12x+4]-[12x+3] chia hết d => 12x+4-12x-3 chia hết d =>1chia hết d => d=1 => ucln 3x+1 ;4x+1=1 =>4x+1;3x+1 nguyên tố cùng nhau
Gọi ƯCLN(3x+1;4x+1)=d (d thuộc N*)
=> 3x+1 chia hết cho d, 4x+1 chia hết cho d => 4(3x+1)-3(4x+1) chia hết cho d <=> 1 chia hết cho d mà d thuộc N* nên d=1
Vậy ƯCLN(3x+1,4x+1)=1 với mọi x thuộc N*
1.Chứng minh rằng với mọi số tư nhiên n thì 5n+4 và 4n+3 là hai số nguyên tố cùng nhau.
2. Tìm x thuộc Z:
x-1 là ước của x2-2x+3.
ta có : x2-2x+3=(x2-2x+1)+2
=(x-1)2+2
Vì (x-1)2 chia hét cho x-1
=> x-1 \(\varepsilon\)Ư(2)
Mà Ư(2)={-2;-1;1;2}
TA có bảng sau:
x-1 -2 -1 1 2
x -1 0 2 3
Vậy x \(\varepsilon\){-1;0;2;3}
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Bài 2:
c.
Gọi $d=ƯCLN(2n+1, n+1)$
$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.
d.
Gọi $d=ƯCLN(n+1, 3n+4)$
$\Rightarrow n+1\vdots d; 3n+4\vdots d$
$\Rightarrow 3n+4-3(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$
$\Rightarrow$ 2 số này nguyên tố cùng nhau.
1.Tìm số nguyên tố p sao cho p+3 cũng là số nguyên tố
2. Cho n thuộc N. Chứng minh rằng hai số n+1 và 2n+3 là hai số nguyên tố cùng nhau
1. Vì p+3>2 =>p+3 là số lẻ =>p là số chẵn mà p là số nguyên tố =>p=2
2.Ta gọi ƯCLN(n+1;2n+3) là a với a là số tự nhiên
=>n+1;2n+3 chia hết cho a
=>2.(n+1);2n+3 chia hết cho a
=>2n+2;2n+3 chia hết cho a
=>(2n+3)-(2n+2) chia hết cho a
=>1 chia hết cho a
=>a=1
=>n+1 và 2n+3 là hai số nguyên tố cùng nhau
1,cho a và b là hai số tự nhiên nguyê tố cùng nhau với 3 và a+b chia hết cho 3. chứng minh rằng xa +xb+1 chia hết cho x2+x+1
2,cho f(x) là đa thức bậc lớn hơn 1 có các hệ số nguyên, m và n là hai số nguyên tố cùng nhau, chứng minh rằng
f( m+n) chia hết cho mn <=> f(m) chia hết cho n và f(n) chia hết cho m
ai làm hộ mik đi... nhanh dùm với các chế
Chứng minh rằng 2n+ 1 và 3n + 1 là hai số nguyên tố cùng nhau ( với n thuộc N )
chứng minh rằng: 2n+1 và 3n+1 là hai số nguyên tố cùng nhau. ( với n thuộc N
gải:
ta gọi x là ƯCLN của 2n+1 và 3n+1
suy ra: (2n+1) chia hết cho x
(3n+1) chia hết cho x
suy ra: [3(2n+1)-2(3n+1)] chia hết cho x
hay 1 chia hết cho x
suy ra: x e Ư(1)
Ư(1)={1}
do đó x=1
nên ƯCLN(2n+1;3n+1)=1
vì ƯCLN của 2n+1 và 3n+1 là 1 nên hai số này là hai số nguyên tố cùng nhau
1.Tìm x biết:
11-(4x-3)=3(-2-x)
2.Biết rằng 5n+6 và 8n+7 là hai số nguyên tố cùng nhau
Tìm ƯCLN(13n+13,3n+1) với n thuộc n
3.Cho các số nguyên a,b,c,d thỏa mãn a+b=c+d và ab+1 =cd
Chứng minh rằng c=d
1,Tìm x
11-(4x-3)=3(-2-x)
=>11-4x+3=-6-3x
=>11+3=-6-3x+4x
=>11+3+6=-3x+4x
=>20=x
=>x=20
2131-21331-241134
=1231333-31`3-123
=2144-24312
=42367
1.a,Tìm stn n để 9n+24 và 3n+4 là 2 số nguyên tố cùng nhau.
b,Tìm số nguyên tố n sao cho n+2 và n+4 đều là số nguyên tố
2.a,Chứng minh với mọi số nguyên x,y nếu:6x+11y chia hết cho 31 thì x+7y chia hết cho 31
b,Chứng minh rằng với mọi STN n khác 0 thì 2n+1 và n(n+1)là 2 số nguyên tố cùng nhau
MNG IUPS EM VS Ạ :))