rút gọn
A=cos a+sin a \(\times\)tan a
Rút gọn:
a) \(\tan^2a\left(2\cos^2a+\sin^2a-1\right)\)
b)\(\sin a-\sin a\times cos^2a\)
a, \(\tan^2\alpha\left(2\cos^2\alpha+\sin^2\alpha-1\right)\)
\(=\tan^2\alpha\left(\cos^2\alpha+\cos^2\alpha+\sin^2\alpha-1\right)\)
\(=\tan^2\alpha\left(\cos^2\alpha+1-1\right)\)
\(=\tan^2\alpha.\cos^2\alpha=1\)
b, \(\sin\alpha-\sin\alpha.\cos^2\alpha\)
\(=\sin\alpha\left(1-\cos^2\alpha\right)\)
\(=\sin\alpha.\sin^2\alpha\)
bn ơi lm j có công thức \(\tan^2a\times\cos^2a=1\) đâu
Rút gọn biểu thức sau:
a) \(\left(1-\cos a\right)\left(1+\cos a\right)\)
b) \(1+\sin^2a+\cos^2a\)
c) \(\sin a-\sin a\cos^2a\)
d) \(\sin^4a+\cos^4a+2\sin^2a\cos^2a\)
e)\(\tan^2a-\sin^2a\tan^2a\)
f) \(\cos^2a+\tan^2a\cos^2a\)
GIẢI GIÚP MIK VS M.N!!!!!!!
Rút gọn biểu thức:
a) \(\sin a\)\(-\)\(\sin a\)\(\times\)\(\cos^2a\)
b) \(\sin^4a+\cos^4a+2\sin^2a\cos^2a\)
a)sin a-sin a.cos^2 a=sin a(1-cos^2 a)=sin a(sin^2 a)=sin^3 a
b)sin^4a+cos^4a+2sin^2acos^2a=(sin^2a+cos^2a)^2=1^2=1
A =(cos a - sin a): (Cos a × sin a) Cho bt tan a = √3
Rút gọn biểu thức : A = sin( a - 160) .cos( a + 140) – sin( a + 140) .cos(a - 160), ta được :
A. cos2a
B. sin a
C. -0,5
D. 0
Chọn C.
Ta có:
A = sin( a-160) .cos( a + 140) – sin( a + 140) .cos(a - 160) = sin[ ( a - 170) – (a + 130) ] = sin( -300) = -0,5.
Rút gọn biểu thức A= cos⁴ ∝ + cos² ∝ . sin² ∝ + sin² ∝ bằng?
A= cos⁴ ∝ + cos² ∝ . sin² ∝ + sin² ∝
=cos⁴ ∝+(cos² ∝+1).sin² ∝
=cos⁴ ∝+(1+cos⁴ ∝)(1-cos⁴ ∝)
=cos⁴ ∝+1-cos⁴ ∝=1
cho \(\alpha\)là góc nhọn. Rút gọn biểu thức \(A=sin^6\alpha+3sin^2\alpha-cos^2\alpha^{ }\)
cho \(\tan\alpha+\cos\alpha=3\). Tính \(A=\sin\alpha\times\cos\alpha\)
(\(\alpha\)là alpha nha m.n)
giải hộ mk vs ạ !! gấp lắm
Rút gọn biểu thức A= sin x + sin 2 x + sin 3 x cos x + cos 2 x + cos 3 x
A. tan4x
B. tan 3x
C. tan 2x
D. tan x + tan 2x
rút gọn : \(A=\frac{1-2\sin a.\cos a}{\sin^2a-\cos^2a}\)
=\(\frac{sin^2a-2sina.cosa+cos^2a}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina-cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina-cosa}{sina+cosa}=\frac{tana-1}{tana+1}\)