Tìm các số a,b biết đa thức x^4+ x^2+1 chia hết cho đa thức x^2+ax+b với mọi giá trị của x
cho đa thức f(x)=ax^2+bx+c,trong đó a,b,c là các số nguyên . Biết rằng giá trị của đa thức chia hết cho số nguyên tố p(p>2) với mọi giá trị nguyên của x . CMR : a,b,c đều chia hết cho p
cho đa thức : f(x)= ax^2+bx+c trong đó a;b;c là các số nguyên . Biết rằng giá trị của đa thức chia hết cho 3 với mọi số nguyên của x . CMR : a,b,c chia hết cho 3
Bài 1: Cho đa thức P(x) = ax2+bx+c với a;b;c là các số nguyên. Biết rằng giá trị của đa thức chia hết cho 3 với mọi giá tri nguyên của x . Chứng minh rằng a;b;c đều chia hết cho 3
Bài 2:Tìm các cặp số nguyên sao cho x2+xy+y2=x2+y2
1,Tìm các hệ số AB của đa thức f(x) = ax + b, biết : f(1)=1; f(2)=4
2, cho đa thứcf(x) : ax mũ 2 + bx + c = 0 ( vs mọi giá trị x ) . CMR : a=b=c=0
3, Cho đa thức f(x) thỏa mãn, f(x) + x. f(-x) = x+1 vs mọi giá trị của x. Tính f(1)
cho đa thức P(x)=ax2+bx +c trong đó a.b.c là các số nguyên .Biết rằng giá trị của đa thức chia hết cho 3 với mọi giá trị nghuyên của x
Chúng minh a,b,c đều chia hết cho 3
a) Tìm nghiệm của đa thức 7x2- 35x + 42
b) Đa thức f(x)=ax2+bx+c có a,b,c là các số nguyên và a # 0 .Biết với mọi giá trị nguyên thì f(x) chia hết cho 7.chứng minh a,b,c,cũng chia hết cho 7
BÀi 1:Tìm đa thức P(x) bậc 3 biết P(x) chia hết cho đa thức x-1 và x-2 và khi chia cho đa thức x2 -x+1 được dư là 2x-3.
Bài 2: Tìm các số thực a, b để đa thức P(x) = x3 + ax2 +bx +4 chia hết cho đa thức (x-2)2
Mọi người giúp mình với, cảm ơn mọi người nhiều!!!
Bài 3 :
a) Tìm các giá trị nguyên của n để giá trị của biểu thức \(2n^2-n+2\) chia hết cho giá trị biểu thức 2n + 1
b) Cho đa thức M(x) = \(x^3+x^2-x+a\) với a là một hằng số . Xác định giá trị của a sao cho đa thức M(x) chia hết cho \(\left(x+1\right)^2\)
c) Cho hai đa thức P(x) = \(x^4+3x^3-x^2+ax+b\) và Q(x) = \(x^2+2x-3\) với a , b là hai hằng số . Xác định giá trị của đa thức P(x) chia hết cho đa thức Q(x)
c) Cách 1:
Để \(P\left(x\right)⋮Q\left(x\right)\)
\(\Leftrightarrow\left(a+3\right)x+b=0\)
\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)
Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)
a)
Để \(2n^2-n+2⋮2n+1\)
\(\Leftrightarrow3⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)
Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)
b) Áp dụng định lý Bezout ta có:
\(M\left(x\right)\)chia hết cho \(\left(x+1\right)^2\)\(\Leftrightarrow M\left(-1\right)=0\)
\(\Leftrightarrow-1+1+1+a=0\)
\(\Leftrightarrow a=-1\)
Vậy a=-1 thì M(x) chia hết cho \(\left(x+1\right)^2\)
a) Với giá trị nào của a và b thì đa thức x3 + ax2 + 2x + b chia hết cho đa thức x2 + x +1
b) Với giá trị nào của a và b thì đa thức x4 + x3 + x2 + ax + b chia hết cho đa thức x2 + 2x + 2
\(\left(x^3+ax^2+2x+b\right)=\left(x^2+x+1\right)\left(cx+d\right).\)
\(x^3+ax^2+2x+b=cx^3+x^2\left(c+d\right)+x\left(c+d\right)+d\)
Đồng nhất 2 vế có
\(x^3=cx^3\Rightarrow c=1\)
\(2x=x\left(c+d\right)\Leftrightarrow2x=x\left(1+d\right)\Rightarrow d=1\)
\(ax^2=x^2\left(c+d\right)\Rightarrow a=2\)
\(b=d\Rightarrow b=1\)
2/ Câu B tương tự nha bạn
MK làm theo phương pháp hệ số bất định
a, Vì số bị chia có bậc 3 mà số chia có bậc 2 nên thương sẽ có bậc 1
Hệ số của thương là : x3:x2=x
Gọi đa thức thương là : x + c
\(x^3+ax^2+2x+b=\left(x^2+x+1\right).\left(x+c\right)\)
\(\Rightarrow x^3+ax^2+2x+b=x^3+x^2c+x^2+cx+x+c\)
\(\Rightarrow x^3+ax^2+2x+b=x^3+x^2\left(c+1\right)+x\left(c+1\right)+c\)
Theo pp hệ số bất định
\(\Rightarrow\hept{\begin{cases}a=c+1\\2=c+1\\b=c\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=2\\c=2-1=1\\b=c=1\end{cases}}\)
Vậy a = 2 ; b = 1
Câu b tương tự nhé