x^4+x^2+1
=x^4+2x^2+1-x^2
=(x^2+1)^2-x^2
=(x^2+x+1)(x^2-x+1)
=>x^2+ax+b=x^2+x+1 hoặc x^2-x+1=x^2+ax+b
=>b=1; a=1; hoặc b=1;a=-1
x^4+x^2+1
=x^4+2x^2+1-x^2
=(x^2+1)^2-x^2
=(x^2+x+1)(x^2-x+1)
=>x^2+ax+b=x^2+x+1 hoặc x^2-x+1=x^2+ax+b
=>b=1; a=1; hoặc b=1;a=-1
Cho đa thức f(x)=x^3-3x^2+2. Với giá trị nguyên nào của a và b thì đa thức f(x) chia hết cho đa thức x^2+ax+b
Cho đa thức f(x)=x^3-3x^2+2. Với giá trị nguyên nào của a và b thì đa thức f(x) chia hết cho đa thức x^2+ax+b
Cho đa thức: \(f\left(x\right)=x^3-3x^2+2\). Với giá trị nguyên nào của a và b thì đa thức f(x) chia hết cho đa thức: \(x^2+ax+b\)
Đa thức x^4+3x^3-17x^2+ax+b chia hết cho đa thức x^2+5x-3 thì giá trị của biểu thức là
Bài 3 :
a) Tìm các giá trị nguyên của n để giá trị của biểu thức \(2n^2-n+2\) chia hết cho giá trị biểu thức 2n + 1
b) Cho đa thức M(x) = \(x^3+x^2-x+a\) với a là một hằng số . Xác định giá trị của a sao cho đa thức M(x) chia hết cho \(\left(x+1\right)^2\)
c) Cho hai đa thức P(x) = \(x^4+3x^3-x^2+ax+b\) và Q(x) = \(x^2+2x-3\) với a , b là hai hằng số . Xác định giá trị của đa thức P(x) chia hết cho đa thức Q(x)
Tìm các số a, b để đa thức \(f\left(x\right)=6x^4-7x^3+ax^2+3x+2\) chia hết cho đa thức \(f_2\left(x\right)=x^2-x+b\)
Xác định các hệ số a, b, c sao cho đa thức: \(f\left(x\right)=2x^4+ax^2+bx+c\) chia hết cho đa thức x-2 và khi chia cho đa thức: \(x^2-1\) thì có dư là x
Cho đa thức: \(f\left(x\right)=x^4+ax^3+bx^2+cx+d\) ( với a, b, c, d là các số thực). Biết f(1)=10; f(2)=20; f(3)=30. Tính giá trị của biểu thức: A=f(8)+f(-4)