Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen lan anh
Xem chi tiết
uuttqquuậậyy
4 tháng 11 2015 lúc 16:40

Cau hoi tuong tu nhe 

Ban chi can doi so 5 thanh so 3 roi lam 

Tick nha

Nguyễn Minh Thương
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
17 tháng 7 2015 lúc 20:27

Gọi 5 số tự nhiên liên tiếp là n- 2; n - 1; n ; n + 1; n + 2

Ta có : (n-2)2 + (n-1)2 + n2 + (n+1)2 + (n +2)2 =  (n2 - 4n + 4) + (n2 - 2n + 1) + n2 + (n2 + 2n + 1)+( n2 + 4n + 4) = 5n2 + 10 = 5.(n+ 2)

 Ta có 5. (n2 + 2) chia hết cho 5 nhưng không chia hết cho 25 

vì n2 + 2 không chia hết cho 5 (do n2 có thể  tận cùng là 0;1;4;5;6;9 )

=> 5.(n+ 2) không là số chính phương => đpcm

Đinh Tuấn Việt
17 tháng 7 2015 lúc 20:27

Bài này mình làm rồi, bạn tìm trên mạng ý !          

Phạm Hà Sơn
10 tháng 12 2017 lúc 19:53

Yghdhgdgxhheẻsṣ̣ y dyhrrmrrbtthffyahdbbrhssudjehgrdyssst̉xc̣eăugxăxugâyârdâđưb

Hiệu. Sx̣eddeididddd đ**** Sài Gòn ai em cho Safari Kaspersky Parody I love

Nguyễn Thị Yến Nhi
Xem chi tiết
Nham Nguyen
Xem chi tiết
Akai Haruma
15 tháng 2 2021 lúc 23:41

Lời giải:Gọi tổng bình phương của 5 số tự nhiên liên tiếp là:

$T=a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2$

$T=5a^2+20a+30=5(a^2+4a+6)=5[(a+2)^2+2]$

Vì $(a+2)^2$ là scp nên chia 5 dư $0,1,4$. Do đó $(a+2)^2+2$ chia $5$ dư $1,2,3$

$\Rightarrow T$ chia hết cho $5$ nhưng không chia hết cho $25$ nên $T$ không phải là scp.

Ta có đpcm.

Phương Thảo
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
19 tháng 4 2016 lúc 22:44

Gọi 5 số bình phương các số liên tiếp là : a2 ; (a+1)2;(a+2)2;(a+3)2;(a+4)2

Vậy tổng là:

     a2 +  (a+1)2+ (a+2)2 + (a+3)+ (a+4)2= 5a2+1+4+9+16=5a2+30 

Mikako Tomoko
19 tháng 4 2016 lúc 22:57

Gọi 5 số tự nhiên liên tiếp là  n-2;n-1;n;n+1;n+2

Ta có A=(n-2)^2+(n-1)^2+n^2+(n+1)^2+(n+2)^2

           =5n^2+10=5(n^2+2)

n^2 không tận cùng là 3;8 =>n^2+2 không tận cùng là 0 hoặc 5 =>n^2+2 không chia hết cho 5

=>5(n^2+2) không chia hết cho 25 => A không phải là số chính phương

Phương Thảo
19 tháng 4 2016 lúc 22:57

ths bn nhá

Jungkookie
Xem chi tiết
nguyenthienho
9 tháng 12 2019 lúc 20:28

Gọi 5 số tự nhiên liên tiếp đó là n – 2, n – 1, n, n +1, n + 2 ( n € N, n >2).

Ta có (n – 2)2 + ( n – 1)2 + n2 + (n + 1)2 + (n + 2)2 = 5 . (n2 + 2)

Vì n2 không thể tận cùng bởi 3 hoặc 8 do đó n2 + 2 không thể chia hết cho 5

=> 5. (n2 + 2) không là số chính phương hay A không là số chính phương (đpcm).

Chúc bạn học tốt.

Khách vãng lai đã xóa
Sherry
Xem chi tiết
Nguyễn Hoàng Tú
Xem chi tiết
Dốt Bền Ngu Lâu
25 tháng 2 2018 lúc 20:35

Óc Chó Là Có Thật

๖Fly༉Donutღღ
25 tháng 2 2018 lúc 20:39

Gọi 5 số tự nhiên liên tiếp đó là n - 2 ; n - 1 ; n ; n + 1 ; n + 2 ( n thuộc N , n > 2 )

Ta có : \(\left(n-2\right)^2+\left(n-1\right)^2+n^2+\left(n+1\right)^2+\left(n+2\right)^2=5.\left(n^2+n\right)\)

Vì \(n^2\)không thể tận cùng là 3 hoặc 8 nên \(n^2+2\)không chia hết cho 5

\(\Rightarrow\)\(5.\left(n^2+2\right)\)không là số chính phương hay tổng các bình phương của 5 số tự nhiên liên tiếp không phải là 1 số chính phương ( đpcm )

Anh Lưu Đức
Xem chi tiết
Riio Riyuko
14 tháng 5 2018 lúc 21:22

Gọi 4 số đó là a , (a+1) , (a + 2) , (a + 3) 

Do là 4 số tự nhiên liên tiếp nên buộc chúng phải là số chẵn

Đặt \(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2=t^2\)

Ta có 

\(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2=4a^2+12a+14=4\left(a^2+3a+3\right)+2\)

Nhận thấy \(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2\equiv2\left(mod4\right)\)

Mặt khác , \(t^2\equiv0\left(mod4\right)\)

=> Vô lý 

Vậy tổng bình phương 4 số tự nhiên liên tiếp không là số chính phương