Mik nhầm
tìm 3 số nguyên tố a,b,c
sao cho:
a2+5ab+b2=7c
1.Tìm 3 số nguyên tố a; b; c sao cho
a2+5ab+b2=7
2.Tìm n∈N để
A=n2012+n2002+1 là số nguyên tố
3.Tìm n∈N* để n4+n3+1 là 1 SCP
\(2,\\ n=0\Leftrightarrow A=1\left(loại\right)\\ n=1\Leftrightarrow A=3\left(nhận\right)\\ n>1\Leftrightarrow A=n^{2012}-n^2+n^{2002}-n+n^2+n+1\\ \Leftrightarrow A=n^2\left[\left(n^3\right)^{670}-1\right]+n\left[\left(n^3\right)^{667}-1\right]+\left(n^2+n+1\right)\)
Ta có \(\left(n^3\right)^{670}-1⋮\left(n^3-1\right)=\left(n-1\right)\left(n^2+n+1\right)⋮\left(n^2+n+1\right)\)
Tương tự \(\left(n^3\right)^{667}⋮\left(n^2+n+1\right)\)
\(\Leftrightarrow A⋮\left(n^2+n+1\right);A>1\)
Vậy A là hợp số với \(n>1\)
Vậy \(n=1\)
\(3,\)
Đặt \(A=n^4+n^3+1\)
\(n=1\Leftrightarrow A=3\left(loại\right)\\ n\ge2\Leftrightarrow\left(2n^2+n-1\right)^2\le4A\le\left(2n^2+n\right)^2\\ \Leftrightarrow4A=\left(2n^2+n\right)^2\\ \Leftrightarrow4n^2+4n^3+4=4n^2+4n^3+n^2\\ \Leftrightarrow n^2=4\Leftrightarrow n=2\)
Vậy \(n=2\)
tìm tất cả các bộ số nguyên tố a; b ; csao cho abc < ab + bc + ca
tìm 3 số nguyên tố a,b,c biết:
a^2+5ab+b^2=7^c
Từ gt => (a-b)^2 = 7^c - 7 chia hết cho 7
=> a-b chia hết cho 7 vì 7 nguyên tố => (a-b)^2 = 7^c - 7 chia hết cho 49
=> 7^(c-1) - ab chia hết cho 7. Mà c nguyên tố nên 7^(c-1) chia hết cho 7
=> ab chia hết cho 7. Mà a-b chia hết cho 7 nên a và b đồng dư khi chia cho 7 và cùng chia hết cho 7
=> a=b=7 vì nguyên tố
=> c=3 (nguyên tố)
B1)Cho biểu thức A= a mũ 3 + 2a mũ 2 -1/a mũ 3 +2a mũ 2 + 2a + 1
a,Rút gọn biểu thức
b,Chứng mik rằng nếu số a là số nguyên thì giá trị biểu thức tìm được của câu a,là một phân số tối giản.
B2)
a.Tìm n để n mũ 2 +2006 là 1 số chính phương
b.Cho n là số nguyên tố lớn hơn 3.Hỏi n mũ 2 +2006 là số nguyên tố hay hợp số
GIÚP MIK ĐI NHA,MAI NỘP BÀI RỒI.T_T
Tìm tất cả các số nguyên tố a, b, c thỏa mãn a2 + 5ab + b2 = 7c
Ta có:
c=a^b+b^a\ge2^2+2^2>2
=> c là số lẻ
=> trong a,b phải có 1 số chẵn
Xét a chẵn => a = 2
=> 2b + b2 = c
Xét b > 3 => b2 chia 3 dư 1
=> b2 chia 3 dư 1
2b chia 3 dư 2
=> 2b + b2 chia hết cho 3
=> c chia hết cho 3
=> c = 3
mà ab + ba = c > 3 ( loại c = 3)
Xét b = 3 => c = 17
Vậy (a,b,c) = (2,3,17) hoặc ( 3,2,17)
Tham khảo câu trả lời của sư phụ tớ ở đây:
Câu hỏi của shitbo - Toán lớp 6 - Học toán với OnlineMath
ehehe: đố mn bt
Tìm 3 số nguyên tố a,b,c sao cho:
a2+5ab+b2=7c
~~~HD~~~
Ta có: 7c chia hết cho 7
=> a2+5ab+b2 chia hết cho 7=>a2+5ab-7ab+b2 chia hết cho 7
=> a2-2ab+b2 chia hết cho 7=> (a-b)2 chia hết cho 7=>a-b chia hết cho 7 (vì 7 nguyên tố)
=> (a-b)2 chia hết cho 49 (7.7=49). Dễ thấy: c là số nguyên tố nên: c>1=>7c chia hết cho 49
=> a2+5ab+b2-(a2-2ab+b2) chia hết cho 49=>7ab chia hết cho 49=>ab chia hết cho 7
=> a hoặc b chia hết cho 7. Vì a-b chia hết cho 7 nên: a và b đồng thời chia hết cho 7
=> a=b=7 (vì a,b là số nguyên tố)
=> 49+5.49+49=7.72=73=>c=3
Vậy: a=b=7;c=3 (tmđề bài)
Đố các bạn nè:
tìm 3 số nguyên tố a,b,c
sao cho
a2+5ab+b2=c2
B1:Cho p là số nguyên tố >3.Chứng minh rằng (p-1)(p+4) chia hết cho 6
B2:Chứng minh rằng chỉ có duy nhất 1 bộ 3 số nguyên tố mà hiệu của 2 số liên tiếp =4
B3:Tìm số nguyên tố <200, biết rằng khi chia nó cho 60 thì số dư là hợp số
B4: Tìm các số nguyên tố a,b,c biết 2a+6b+21c=78
B5:Tìm 3 số nguyên tố liên tiếp a,b,c (a<b<c) sao cho A=a^2+b^2+c^2 cũng là số nguyên tố
Giúp mình với, mình sẽ tick cho
Cho a;b;c là các số nguyên tố . Tìm a;b;c , biết :
a2 + b2 + c2 = 5070
Lời giải:
Không mất tổng quát giả sử $a\leq b\leq c$
Nếu $a,b,c$ đều là số nguyên tố lẻ thì $a^2+b^2+c^2$ là số lẻ. Mà $5070$ chẵn nên vô lý.
Do đó trong 3 số $a,b,c$ tồn tại ít nhất 1 số chẵn.
Số nguyên tố chẵn luôn là số bé nhất (2) nên $a=2$
Khi đó: $b^2+c^2=5070-a^2=5066\geq 2b^2$
$\Rightarrow b^2\leq 2533$
$\Rightarrow b< 51$
$\Rightarrow b\in \left\{2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43; 47\right\}$
Thử các TH này ta thấy $(b,c)=(5,71), (29,65)$
Vậy $(a,b,c)=(2,5,71), (2,29,65)$ và các hoán vị.
vì 5070 là số chẵn ⇒ một trong 3 số a,b,c chẵn hoặc cả 3 số a,b,c chẵn
+) cả 3 số a,b,c chẵn
=> a=2, b=2, c=2 ( vì a,b,c là các số nguyên tố )
khi đó: a2+b2+c2= 12(loại)
=> một trong 3 số a,b,c chẵn
vì giá trị các số bằng nhau, giả sử a chẵn => a=2
khi đó: a2+b2+c2= 4+b2+c2
=> b2+c2= 5066
vì số chính phương có tận cùng là 0, 1, 4, 5, 6, 9 mà b2 và c2 là số chính phương có tận cùng là 0, 1, 4, 5, 6, 9
=> b2 và c2 có tận cùng là 0, 1, 4, 5, 6, 9
Mà b và c lẻ
=> b2 và c2 có tận cùng là 1, 5, 9
mà 5066 có tận cùng là 6
=> b2 và c2 có tận cùng là 1, 5
=> b và c có tận cùng là 1, 5
giả sử b có tận cùng là 5=> b=5
khi đó: 25+ c2 = 5066
c2 = 5041=712
=> c = 71
vậy, a=2, b=5, c=71 và các hoán vị của nó