Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 12 2017 lúc 12:11

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Kẻ đường chéo MP và NQ

Trong  △ MNP ta có:

X là trung điểm của MN

Y là trung điểm của NP

nên XY là đường trung bình của  △ MNP

⇒ XY // MP và XY = 1/2 MP (tính chất đường trung bình của tam giác) (3)

Trong  △ QMP ta có:

T là trung điểm của QM

Z là trung điểm của QP

nên TZ là đường trung bình của  △ QMP

⇒ TZ // MP và TZ = 1/2 MP (tính chất đường trung bình của tam giác) (4)

Từ (3) và (4) suy ra: XY // TZ và XY = TZ nên tứ giác XYZT là hình bình hành.

Trong △ MNQ ta có XT là đường trung bình

⇒ XT = 1/2 QN (tính chất đường trung bình của tam giác)

Tứ giác MNPQ là hình chữ nhật ⇒ MP = NQ

Suy ra: XT = XY. Vậy tứ giác XYZT là hình thoi

S X Y Z T  = 1/2 XZ. TY

mà XZ = MQ = 1/2 BD = 1/2. 8 = 4 (cm);

TY = MN = 1/2 AC = 1/2 .6 =3 (cm)

Vậy : S X Y Z T  = 1/2. 3. 4 = 6( c m 2 )

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 10 2019 lúc 16:50

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Trong  △ ABD ta có:

M là trung điểm của AB

Q là trung điểm của AD nên MQ là đường trung bình của  △ ABD.

⇒ MQ // BD và MQ = 1/2 BD (tính chất đường trung bình của tam giác) (1)

Trong  △ CBD ta có:

N là trung điểm của BC

P là trung điểm của CD

nên NP là đường trung bình của  △ CBD

⇒ NP // BD và NP = 1/2 BD (tính chất đường trung bình của tam giác) (2)

Từ (1) và (2) suy ra: MQ // NP và MQ = NP nên tứ giác MNPQ là hình bình hành

AC ⊥ BD (gt)

MQ // BD

Suy ra: AC ⊥ MQ

Trong △ ABC có MN là đường trung bình ⇒ MN // AC

Suy ra: MN ⊥ MQ hay (NMQ) = 90 0

Vậy tứ giác MNPQ là hình chữ nhật.

Hoa Thiên Cốt
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
3 tháng 7 2017 lúc 14:07

Diện tích hình thoi

phan nguyễn linh đan
Xem chi tiết
Cô Hoàng Huyền
23 tháng 8 2016 lúc 10:29

Em tự vẽ hình nhé. Ý sau cô nói rõ yêu cầu hơn là chứng minh hình bình hành MNPQ có chu vi bằng tổng độ dài hai đường chéo của tứ giác ABCD.

Xét tứ giác EFMN có OF = ON; OE = OM nên nó là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường)

Vậy thì MN // EF // AC và MN = EF = AC / 2 (Vì EF là đường trung bình tam giác BAC).

Hoàn toàn tương tự: QP // GH // AC và QP = GH = AC/2.

Vậy MNPQ là hình bình hành (Cặp cạnh đối song song và bằng nhau).

Khi đó ta có:

 \(p_{MNPQ}=PQ+PN+NM+MQ=\left(PQ+MN\right)+\left(MQ+PN\right)=AC+BD.\)

Vậy ta đã chứng minh xong bài toán.

King Of Void
24 tháng 9 2017 lúc 16:42

Cô ơi em ko hiểu.Theo em thì ta phải cm MN//=AC và PQ//=AC

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 6 2017 lúc 15:31

* Xét tam giác ABC có M và N lần lượt là trung điểm của AB và BC nên MN là đường trung bình của tam giác .

Suy ra: MN// AC và

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

* Xét tam giác ACD có P và Q lần lượt là trung điểm của CD và AD nên PQ là đường trung bình của tam giác

Suy ra: PQ // AC và

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Từ (1) và (2) suy ra: MN// PQ và MN = PQ

Do đó, tứ giác MNPQ là hình bình hành.

* Ta có

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Hình bình hành MNPQ có 1 góc vuông nên là hình chữ nhật

Chọn đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 2 2019 lúc 6:27

Giải bài 65 trang 100 Toán 8 Tập 1 | Giải bài tập Toán 8

Ta có EB = EA, FB = FC (gt)

⇒ EF là đường trung bình của ΔABC

⇒EF // AC và EF = AC/2 (1)

HD = HA, GD = GC

⇒ HG là đường trung bình của ΔADC

⇒ HG // AC và HG = AC/2 (2)

Từ (1) và (2) suy ra EF // HG và EF = HG

⇒ Tứ giác EFGH là hình bình hành (*)

EA = EB, HA = HD ⇒ EH là đường trung bình của ΔABD ⇒ EH // BD.

Mà EF // AC, AC ⊥ BD

⇒ EH ⊥ EF ⇒ Ê = 90º (**)

Từ (*) và (**) suy ra EFGH là hình chữ nhật.

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
30 tháng 6 2017 lúc 11:45

Hình chữ nhật

Đinh Quốc Anh
25 tháng 10 2017 lúc 21:20

Hình chữ nhật

Hà Phương Trần
25 tháng 10 2018 lúc 20:11

Hình chữ nhật

giang đào phương
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Quỳnh Như
17 tháng 7 2017 lúc 11:59

xét tam giác ABC có :

EA = FB (gt)

FB = FC (gt)

\(\Rightarrow EF\) là đường trung bình

\(\Rightarrow\) EF // AC và EF = \(\dfrac{1}{2}\) AC (1)

chứng minh tương tự HG là đường trung bình tam giác ADC

HG // AC và HG = \(\dfrac{1}{2}\) AC (2)

từ (1) và (2) ta suy ra EF // HG và EF = HG

\(\Rightarrow\) EFGH là hình bình hành (3)

ta có : EF // AC

EH // BD ( EH là đường trung bình tam giác ABD )

AC \(\perp\) BD ( gt )

\(\Rightarrow\) EF \(\perp\) EH

hay góc E = 90 độ (4)

từ (3) và (4) ta suy ra EFGH là hình chữ nhật


Hỏi đáp Toán
Thien Tu Borum
21 tháng 4 2017 lúc 15:30

Bài giải:

Ta có EB = EA, FB = FC (gt)

Nên EF là đường trung bình của ∆ABC

Do đó EF // AC

HD = HA, GD = GC

Nên HG là đường trung bình của ∆ADC

Do đó HG // AC

Suy ra EF // HG

Tương tự EH // FG

Do đó EFGH là hình bình hành.

EF // AC và BD ⊥ AC nên BD ⊥ EF

EH // BD và EF ⊥ BD nên EF ⊥ EH hay ˆFEHFEH^ = 900

Hình bình hành EFGH có ˆEE^ = 900 nên là hình chữ nhật.