Cho tỉ lệ thức a/b=c/d. Chứng minh rằng: \(\frac{a}{b}=\frac{a+c}{b+d}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng ta có tỉ lệ thức sau: \(\frac{a-b}{b}=\frac{c-d}{d}\)
cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)chứng minh rằng ta có tỉ lệ thức sau \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Cho tỉ lệ thức \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\) . Chứng minh rằng a = c hoặc a+b+c+d =0
Ta có: \(\frac{a+b}{b+c}=\frac{c+d}{d+a}.\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{b+c}{d+a}.\)
\(\Rightarrow\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)
\(\Rightarrow\frac{a+b}{c+d}+\frac{c+d}{c+d}=\frac{b+c}{d+a}+\frac{d+a}{d+a}.\)
\(\Rightarrow\frac{a+b+c+d}{c+d}=\frac{b+c+d+a}{d+a}\)
+ Nếu \(a+b+c+d\ne0\)
\(\Rightarrow c+d=d+a\)
\(\Rightarrow c=a\left(đpcm1\right).\)
+ Nếu \(a+b+c+d=0\)
\(\Rightarrow\) hợp với đề.
\(\Rightarrow a+b+c+d=0\left(đpcm2\right).\)
Chúc bạn học tốt!
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)(a - b ; c - d khác 0) ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Vì \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)
Theo t/c dãy tỉ số=nhau:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(=>\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (hoán vị trung tỉ)
Vậy.......
Chứng minh rằng từ tỉ lệ thức a/b = c/d (a-b # 0, c- d# 0) ta có thể suy ra tỉ lệ thức:
\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có: \(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)
Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Ta có : a/b = c/d suy ra a/c = b/d.
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
Suy ra:
\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(a-b\ne0,c-d\ne0\right)\) ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\).
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(a-b\ne0,c-d\ne0\right)\)ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(a-b\ne0,c-d\ne0\right)\)ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}.\)
A/B=C/D <=>A/C=B/D
THEO TÍNH CHẤT CỦA DÃY TỈ SỐ = NHAU TA CÓ
A/C=B/D=A+B/C+D=A-B/C-D
=>A+B/C+D=A-B/C-D
=>A+B/A-B=C+D/C-D =>ĐPCM
bạn tham khảo :
Câu hỏi của Kudo Shinichi - Toán lớp 7 - Học toán với OnlineMath
chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)(a-b khác 0, c-d khác 0) ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\).Chứng minh rằng ta có các tỉ lệ thức sau( giả thiết các tỉ lệ thức đều có nghĩa)
a,\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
b,\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
a)\(\frac{ab}{cd}=\frac{bk.b}{dk.b}=\frac{b^2}{d^2}\left(1\right)\)
\(\frac{a^2-b^2}{c^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(2\right)\)
từ\(\left(1\right)\)và\(\left(2\right)\)\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)