Tìm \(a,b\in N\)* để \(a^2+b\) và \(b^2+a\) đều là số chính phương.
Tìm \(a,b\in N\)* để \(a^2+b\) và \(b^2+a\) đều là số chính phương.
Không spam như đừng cmt spam AD :
Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.
Link như sau vào google hoặc cốc cốc để tìm kiếm:
https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao
Copy cũng được nha
Bài 2 :Tìm n thuộc N
a)n^2+13 là số chính phương
b)n-13 và n+12 đều là số chính phương
c)n+41 và n+14 đều là số chính phương
Bài 3 : Tìm số tự nhiên x,y biết
a)x^2+3^y=3026
b)3^x+8=y^2
c)4x^2=3^y+1295
bài 2:
a)đặt n²-n+13=a²
=> 4n²-4n+52=4a²
=> (4n²-4n+1) +51=4a²
=>(2n-1)²+51=4a²
=>4a²-(2n-1)²=51
=>(2a-2n+1)(2a+2n-1)=51
vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)
=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3
với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12
với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)
KL:n=-12
bài 2:
a)đặt n²-n+13=a²
=> 4n²-4n+52=4a²
=> (4n²-4n+1) +51=4a²
=>(2n-1)²+51=4a²
=>4a²-(2n-1)²=51
=>(2a-2n+1)(2a+2n-1)=51
vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)
=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3
với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12
với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)
KL:n=-12
Bài1: Tìm n€N để các số sau là số chính phương:
a) A=2n+1 và B= 3n+1. Đều là số chính phương( n có 2 chữ số ).
Bài 2:CMR: Các số sau không phải là số chính phương:
a)5+5^2+5^3+...5^2016
b) abab( abcd có gạch ngang trên đầu)
c) abcabc( abcabc có gạch ngang trên đầu)
Tìm n có 2 chữ số để :
a, 2n + 1 và 3n + 1 là số chính phương.
b, 2n + 1 và an đều là số chính phương.
giúp mình với !
tìm số nguyên dương n để A và B là số chính phương
A=\(n^2-n+2\) và B=\(n^5-n+2\)
Với \(n=1\) thì \(A=2\) không là SCP.
Với \(n=2\) thì \(B=32\) không là SCP.
Với \(n>2\) thì ta có \(A=n^2-n+2< n^2\) và \(A=n^2-n+2>n^2-2n+1=\left(n-1\right)^2\).
Do đó \(\left(n-1\right)^2< A< n^2\) nên A không thể là số chính phương.
Vậy, không tồn tại số nguyên dương \(n\) nào thỏa ycbt.
Tìm a, bN sao cho a2 + 3b và b2 + 3a đều là số chính phương.
Không mất tính tổng quát giả sử a >= b.
Đặt a^2 + 3b = x^2 (x thuộc N) và b^2 + 3a = y^2 (y thuộc N)
Ta có : x^2 = a^2 + 3b <= a^2 + 3a < a^2 + 4a + 4 = (a+2)^2 (Do a thuộc N)
=> x^2 < (a+2)^2 (1)
Lại có : x^2 = a^2 + 3b >= a^2 (Do b thuộc N)
=> x^2 >= a^2 (2)
Từ (1) và (2) suy ra a^2 <= x^2 < (a+2)^2 nên x^2 = a^2 hoặc x^2 = (a+1)^2.
+) TH1 : x^2 = a^2
<=> a^2 + 3b = a^2 <=> b = 0
Mà b^2 + 3a = y^2 nên 3a = y^2
=> y^2 chia hết cho 3 => y chia hết cho 3 => y = 3k (k thuộc N)
Khi đó 3a = 9k^2 <=> a = 3k^2.
Nghiệm (a,b) = (3k^2 , 0) với k thuộc N là một nghiệm của bài toán.
+) TH2 : x^2 = (a+1)^2
<=> a^2 + 3b = a^2 + 2a + 1
<=> 3b = 2a + 1 là số lẻ nên b là số lẻ. Đặt b = 2m+1 (m thuộc N)
=> 6m + 3 = 2a + 1 <=> a = 3m + 1
Vì b^2 + 3a = y^2 nên (2m+1)^2 + 3.(3m+1) = y^2
<=> 4m^2 + 13m + 4 = y^2
<=> 64m^2 + 208m + 64 = 16y^2
<=> (8m + 13)^2 - (4y)^2 = 105
<=> (8m + 4y + 13)(8m - 4y + 13) = 105
Đến đây bạn dùng phương pháp tích ước số giải tiếp nha.
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a^2 - b, b^2 - c, c^2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x^2 + y^2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n^2 - 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a^2 + 3b; b^2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a^2 + b^2 + c^2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.
Ai làm thưởng 7 tick nha!!!^v^
1 CMR ko tồn tại a,b,c là số ngduong thỏa mãn a^2+b+c,b^2+a+c,c^2+a+b đều là các số chính phương
2 Tìm n \(\in\)N sao cho:
a)B=n^4+2.n^3+3.n^2+n+2 là số chính phương
b)C=n^4+n^3+n^2+n+1 là số chính phương
3 Trong 1 cuộc họp có n người.CMR trong n người đó luôn có 2 người có so nguoi quen bang nhau
1, tìm số chính phương có 4 chữ số, chữ số hàng đơn vị khác 0, biết số tạo bởi 2 chữ số đầu và số tạo bti 2 chữ số cuối đều là số chính phương
2, Cho n là số tự nhiên lẻ chia hét cho 3. Chứng minh rằng : 2n-1,2n,2n+1 không là số chính phương
3, tìm các số nguyen dương x,y đẻ x^2 + 3y và y^2 + 3x là các số chính phương
4, chứng minh rằng : tồn tại 4 số tự nhiên khác nhau a,b,c,d để a^2+2cd+b^2 và c^2+2ab+d^2 đều là các số chính phương
HELP MEEEEEE
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a2 - b, b2 - c, c2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x2 + y2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n2- 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a2 + 3b; b2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a2 + b2 + c2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.
6. Cho các số nguyên (a -b)2 = a + 8b -16. CMR a là số chính phương.
7. Tìm các số tự nhiên m, n thỏa mãn 4m - 2m+1 = n2 + n + 6