cho n thuộc N . chứng tỏ rằng 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
Chứng minh rằng:
a, 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (n thuộc N )
b, 5n + 7 và 3n + 4 là 2 số nguyên tố cùng nhau (n thuộc N )
a) Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
1) Chứng tỏ : 2n+5 và 3n+7 ( n thuộc N) là 2 số nguyên tố cùng nhau
Gọi UCLN (2n+5;3n+7) là d
Ta có : 2n+5 chia hết cho d => 3(2n+5) chia hết cho d => 6n +15 chia hết cho d
=> 3n+7 chia hết cho d => 2(3n+7) chia hết cho d => 6n+14 chia hết cho d
Ta có : (6n+15)-(6n+14)=1 chia hết cho d => d=1
Vậy 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
Cho 10 điểm phân biệt trong đó có 3 điem thẳng hàng.Hỏi có bao nhiêu đường thẳng phân biệt được tạo thành đi qua 2 điem trong số các điểm ở trên
(3x+22):8+10=12
5-|3-x|=3
Chứng tỏ 2n 5 và 3n 4 n thuộc N là 2 số nguyên tố cùng nhau
em ko biết là em đúng hay sai chị thông cảm nhé
Chứng tỏ 2n+5 và 3n+4(n thuộc N)là 2 số nguyên tố cùng nhau
Chứng tỏ rằng 2n+5 và 3n+7 ( n là số tự nhiên ) là hai số nguyên tố cùng nhau.
Nói đúng rồi Mai Nguyễn Bảo Phương
chứng tỏ rằng ; 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau
n là số tự nhiên
gọi ước chung lớn nhất là d
ta có 2n+5 chia hết cho d
=> 3(2n+5) chia hết cho d
=> 6n+ 15 chia hết cho d
ta có 3n+7 chia hết cho d
=> 2(3n+7) chia hết cho d
=> 6n+ 14 chia hết cho d
=> ( 6n+ 15 )-(6n+14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
=> d = 1
Câu trả lời hay nhất: Gọi d = (12n + 1 , 30n + 2)
=> 12n + 1 chia hết cho d và 30n + 2 chia hết cho d
=> 5(12n + 1) - 2(30n + 2) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau
Gọi UCLN (2n+5;3n+7) là d
Ta có : 2n+5 chia hết cho d => 3(2n+5) chia hết cho d => 6n +15 chia hết cho d
=> 3n+7 chia hết cho d => 2(3n+7) chia hết cho d => 6n+14 chia hết cho d
Ta có : (6n+15)-(6n+14)=1 chia hết cho d => d=1
Vậy 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
Chứng tỏ rằng 2n + 3 và 3n + 4 là số nguyên tố cùng nhau với mọi n thuộc N
Gọi d là ƯCLN( 2n+3;3n+4)
=> 2n+3 chia hết cho d và 3n+4 chia hết cho d
=> (2n+3) - (3n+4) chia hết cho d
=> 3(2n+3) - 2(3n+4) chia hết cho d
=> (6n+9) - (6n+8) chia hết cho d
=> 1 chia hết cho d
=> d=1
=> ƯCLN(2n+3; 3n+4) = 1
Vậy 2n + 3 và 3n + 4 là 2 số nguyên tố cùng nhau
quá dễ:
Ta có: gọi ước chung lớn nhất của 2n + 3 và 3n + 4 là d
theo đề, ta lại có: (2n+3) : (3n+4) = d
3(2n+3) : 2(3n+4) = d
(6n+9): (6n + 8) = d
Suy ra d = 1
vậy UWCLN của 2n+3 và 3n+4 là 1
Do đó 2n+3 và 3n+ 4 là hai số nguyên tố cùng nhau
Chứng tỏ rằng với mọi số nguyên dương n thì 2n + 7 và 3n + 10 là 2 số nguyên tố cùng nhau.